首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermal reaction of the chloroaryl-chloride complexes trans-(η5-C5Me5)Re(CO)2(ArCl)Cl (ArCl = 3-ClC6H4, 3-ClC6H3(4-Me) and 3,5-Cl2C6H3) in acetonitrile did not interconvert to the cis isomer, instead the complex ReCl(CO)2(NCMe)3 and the corresponding 5-ArCl-1,2,3,4,5-pentamethylcyclopentadiene were formed. Similar reductive elimination products were obtained when the starting rhenium complexes were reacted with trimethylphosphite in toluene.  相似文献   

2.
Reaction of trans-[Pt(H)2(PCy3)2], 1, with [60]fullerene at room temperature affords [Pt(PCy3)2(η2-C60)], 2, in nearly quantitative yield. The most probable reaction pattern is the insertion of a fullerene 6,6 junction onto a Pt-H bond yielding an η1 alkyl derivative which, after hydrogen extrusion, gives 2. On the other hand, addition of 1 to different electron-deficient olefins, such as dimethyl maleate and fumarate, furnishes mixtures of both η1 metal—alkyl and η2 metal—olefin derivatives. If tetrachloroethylene is used as 2π component, trans-[PtCl(H)(PCy3)2] forms exclusively.  相似文献   

3.
The aim of this study was to investigate both the electronic and steric effects of the ancillary phosphine ligand L on the reductive elimination of Me-Me from a series of L2PdMe2 and LPdMe2 complexes. Density functional theory was used to study these processes with the model ligands L = PMe3, PH3, PCl3 and with the experimentally reported ligands L = PPh3, PPh2Me, PPhMe2. For the model ligands we confirm that electron donation from L affects the barrier for reductive elimination from L2PdMe2 but not from LPdMe2. In the former case the greater the electron donation or basicity of L, the greater the barrier and the later the transition state. This is because electron donation increases the σ antibonding between Pd and L in the transition structure. On the other hand, if L is a good π acceptor this stabilizes the occupied dπ orbital of Pd in the transition structure and lowers the barrier to reductive elimination. In the case of the reactions involving LPdMe2 as the intermediate, it is the loss of the first L (L2PdMe2 → LPdMe2 + L) which determines the differences in the barrier height. Greater electron donation leads to greater L-to-Pd σ donation and a stronger Pd-L bond, and thus a greater overall barrier. A comparison of these results with the reductive elimination of 1,3-butadiene from divinyl palladium complexes L2PdR2 shows that the barriers are lower in the vinyl case because of a mix of orbital factors. Our results show that there is a significant stabilizing interaction between the Pd dπ orbital and the vinyl-vinyl hybrid σ orbitals in the reductive elimination transition structure. At the same time this Pd-R2 orbital stabilization alleviates the potential antibonding interactions between Pd and L and makes the vinyl elimination much less susceptible to ancillary ligand effects. Energy-decomposition analyses have been used to elucidate the contributing factors to the activation energies for the reductive eliminations with the model phosphine ligands. These analyses have also been used to disentangle the electronic and steric effects involved in the larger ligand systems. The electronic effects of the experimentally reported ligands are found to be very similar to each other. On the other hand, steric effects lead to a destabilization of the reactant L2PdMe2 complexes but not the transition structures, which results in a decrease in the barriers to reductive elimination compared to the smaller phosphine ligands. These steric effects do not play a role in reductive elimination from LPdMe2. These detailed analyses of the electronic and steric factors may be used to assist the design of systems which enhance or retard reductive elimination behaviour.  相似文献   

4.
Conversion of 4-pentyn-1-ol (A) into 2-methyl-2-pent-4-ynyloxy-tetrahydrofuran (B) is catalysed by camphorimine complexes trans-[PdCl2(YNC10H14O)2] (Y = NMe2, NHMe, NH2, OH, OMe, Pri, Ph), trans-[PdBr2(YNC10H14O)2] (Y = NMe2, NH2, OH, Ph), trans-[PtCl2(YNC10H14O)2] (Y = NMe2, NHMe, NH2). In the presence of H2O those catalysts further promote the conversion of 2-methyl-2-pent-4-ynyloxy-tetrahydrofuran (B) into 5-(2-methyl-tetrahydrofuran-2-yloxy)-pentan-2-one (C). The efficiency of each process highly depends on the characteristics of the Y group (at the camphor ligand), the halide (co-ligand) and the transition metal. To ascertain on the relevance of each parameter into the properties of the catalysts, the rate constants for A → B and B → C processes, TON, TOF and catalysts Activities (Ai) for A → B conversion were calculated. From the three sets of complexes studied the most efficient catalyst is trans-[PdCl2(H2NNC10H14O)2] while trans-[PdCl2(PhNC10H14O)2] is the less efficient. Palladium chloride are considerably better catalysts than palladium bromide complexes except in the case of trans-[PdBr2(HONC10H14O)2] that resembles chloride complexes efficiency. Compared to palladium, platinum complexes are considerably less efficient catalysts.  相似文献   

5.
The d5 low-spin Tc(II) complex trichloro-nitrosyl-bis(dimethylphenyl-phosphine)technetium(II) was studied by EPR at 295 ≥ T ≥ 27.2 K. In the room-temperature spectrum well-resolved 99Tc hyperfine splitting is observed indicating a ground state for the unpaired electron which is well separated from other orbital states. At low temperatures the spectrum can be fitted by an axial spin Hamiltonian. The analysis of the 99Tc hyperfine splitting shows remarkable covalent interactions with the “in-plane” ligands. The 31P superhyperfine splitting observed was used to get information about the overall spin density distribution in the molecular orbital of the unpaired electron.  相似文献   

6.
Three metal square planar complexes of the type [M(CH3)2(NH3)2] (M = Ni, Pd, Pt), with a systematic variation in the metals, are chosen to investigating their SN2-type oxidative addition reactions with methyl iodide by using the B3LYP levels of theory. The oxidative addition was found to take place via a transition state with a nearly linear arrangement of the I-CH3-M moiety. Solvation effects in these oxidative addition reactions were also investigated. Considering the nature of the metal centre and solvation effects, the following conclusions emerge: (i) addition of MeI is exothermic for all three metals, and Pt is predicted to react with a much lower barrier than either Pd or Ni. The results describe that the MeI addition would be expected to be more favourable with the complex bearing the third-row metal (platinum) as compared to the other triad metals, nickel or palladium, in which case a more strongly bound MeI adduct is formed with a lower activation barriers and the reaction being more exothermic; (ii) the reaction is very difficult to occur in low polar solvents, such as benzene, due to the high barrier which is induced by dissociation of iodide anion from methyl group, but the reaction easily occurs in polar solvents, such as acetonitrile; this is attributed to the ability of polar solvents to solvate and therefore stabilize the related polar intermediate ion pair. Ethane reductive elimination from the M(VI) complexes fac-[M(CH3)3(NH3)2I] were also studied, indicating that the Ni(IV) and Pd(IV) complexes are very prone to undergo the reductive elimination while the Pt(IV) analogous is less reactive towards the reductive elimination. The results indicate that in contrast to the Me-Me reductive elimination, the SN2 oxidative addition reaction of MeI to M(II) is much less sensitive to the nature of the metal centre, suggesting that the nucleophilicity of M(II) in [M(CH3)2(NH3)2] does not change significantly as one moves from M = Ni to Pt.  相似文献   

7.
The chemical or electrochemical reduction of the trifluoroacetyl complex Co(CO)3(PPh3)(COCF3) involves a single electron transfer yielding trifluoromethyl radical and an anionic cobalt carbonyl complex. The mechanism is proposed to involve electron transfer followed by initial dissociation of either a carbonyl or phosphine ligand from the 19-electron [Co(CO)3(PPh3)(COCF3)] anion. The resulting 17-electron intermediate undergoes subsequent one-electron reductive elimination of trifluoromethyl radical by homolytic cleavage of the carbon-carbon bond of the trifluoroacetyl group. The radical can be trapped by either benzophenone anion, forming the anion of α-(trifluoromethyl)benzhydrol, or Bu3SnH, yielding CF3H. The ultimate organometallic product is an 18-electron anion, either [Co(CO)4] or [Co(CO)3(PPh3)], depending upon which ligand is initially lost. Fluorine-containing products were identified and quantitated by 19F NMR while cobalt-containing products were determined by IR.  相似文献   

8.
The protonolysis of the PtC bond in trans-[PtH(CH2CN)(PPh32] in methanol/1,2- dichloroethane is shown to take place by a two step mechanism involving oxidative addition to the metal center followed by reductive elimination of CH3CN to give trans-[PtHCl(PPh3)2].  相似文献   

9.
The reaction of [Pt2(μ-S)2(P-P)2] (P-P=2PPh3, 2PMe2Ph, dppf) [dppf=1,1-bis(diphenylphosphino)ferrocene] with cis-[M(C6F5)2(PhCN)2] (M=Ni, Pd) or cis-[Pt(C6F5)2(THF)2] (THF=tetrahydrofuran) afforded sulfide aggregates of the type [{Pt23-S)2(P-P)2}M(C6F5)2] (M=Ni, Pd, Pt). X-ray crystal analysis revealed that [{Pt23-S)2(dppf)2}Pd(C6F5)2], [{Pt23-S)2(PPh3)2}Ni(C6F5)2], [{Pt23-S)2(PPh3)2}Pd(C6F5)2] and [{Pt23-S)2(PMe2Ph)2}Pt(C6F5)2] have triangular M3S2 core structures capped on both sides by μ3-sulfido ligands. The structural features of these polymetallic complexes are described. Some of them display short metal-metal contacts.  相似文献   

10.
The interaction of rhenium hydrides ReHX(CO)(NO)(PR3)2 1 (X=H, R=Me (a), Et (b), iPr (c); X=Cl, R=Me (d)) with a series of proton donors (indole, phenols, fluorinated alcohols, trifluoroacetic acid) was studied by variable temperature IR spectroscopy. The conditions governing the hydrogen bonding ReHHX in solution and in the solid state (IR, X-ray) were elucidated. Spectroscopic and thermodynamic characteristics (−ΔH=2.3–6.1 kcal mol−1) of these hydrogen bonded complexes were obtained. IR spectral evidence that hydrogen bonding with hydride atom precedes proton transfer and the dihydrogen complex formation was found. Hydrogen bonded complex of ReH2(CO)(NO)(PMe3)2 with indole (2a–indole) and organyloxy-complex ReH(OC6H4NO2)(CO)(NO)(PMe3)2 (5a) were characterized by single-crystal X-ray diffraction. A short NHHRe (1.79(5) Å) distance was found in the 2a–indole complex, where the indole molecule lies in the plane of the Re(NO)(CO) fragment (with dihedral angle between the planes 0.01°).  相似文献   

11.
The structure of a nickel(II) complex, trans-[Ni(C6Cl5)(PMe2Ph)2{C(OMe)Me}]BF4, containing the simplest alkyl(alkoxy)carbene ligand has been determined by X-ray crystallography (R = 0.091). The geometry around the nickel atom is square-planar. The comparatively short NiC(1) bond length of 1.843(10) Å showed the presence of π-bonding in the nickel-carbene bond.  相似文献   

12.
The Ru-Ru single bond in [Ru2(CO)4(MeCN)6][BF4]2 remains intact in the reaction with 2-i-propyl-1,8-naphthyridine (iPrNP) and the isolated product is the cis-[Ru2(iPrNP)2(CO)4(OTf)2] (1) obtained via crystallization in the presence of [n-Bu4N][OTf]. The 2-t-butyl-1,8-naphthyridine (tBuNP), on the contrary, leads to the oxidative cleavage of the Ru-Ru single bond resulting in the trans-[Ru(tBuNP)2(MeCN)2][BF4]2[NC(Me)C(Me)N] (2). The anti-[NC(Me)C(Me)N]2− is the product of the two-electron reductive coupling of two acetonitrile molecules. The phenoxo appendage in 2-(2-hydroxyphenyl)-1,8-naphthyridine (hpNP) brings the identical effect of the scission of the Ru-Ru bond but the process is non-oxidative and the product obtained is the cis-[Ru(hpNP)2(CO)2][BF4] (3). The bis-(diphenylphosphino)methane (dppm) in dichloromethane oxidatively cleave the Ru-Ru bond leading to chloro bridged [Ru(μ-Cl)(dppm)(CO)(MeCN)]2[BF4]2 (4). All the complexes have been characterized by the spectroscopic and electrochemical measurements and their structures have been established by X-ray diffraction study.  相似文献   

13.
In addition to well-known dinuclear phenylselenolato palladium complexes, the reaction of [PdCl2(PPh3)2] and NaSePh affords small amounts of novel trinuclear and hexanuclear complexes [Pd3Se(SePh)3(PPh3)3]Cl (1) and [Pd6Cl2Se4(SePh)2(PPh3)6] (2). Complex 1 is triclinic, P1?, a=13.6310(2), b=16.2596(2), c=16.9899(3) Å, α=83.1738(5), β=78.9882(5), γ=78.7635(5)°. Complex 2 is monoclinic, C2/c, a=25.7165(9), b=17.6426(8), c=27.9151(14) Å, β=110.513(2)°. There are no structural forerunners for 1, but the hexanuclear complex 2 is isostructural with [Pd6Cl2Te4(TeR)2(PPh3)6] (R=Ph, C4H3S) that have been observed as one of the products in the oxidative addition of R2Te2 to [Pd(PPh3)4]. Mononuclear palladium complexes may play a significant role as building blocks in the formation of the polynuclear complexes.  相似文献   

14.
Chloride abstraction from [{M(η3 --- C3H5)Cl}n] (M = Pt, n = 4 or M = Pd, n = 2) by (NBu4)2[cis-Pt(C6F5)2(CCSiMe3)2] (1) gives rise to novel homo- and hetero-dinuclear zwitterionic derivatives (NBu4) [{cis-Pt(C6F5)2(CCSiMe3)2}M(η3-C3H5)] (M = Pt 2; M = Pd 3) which are formed by a M(η3-allyl)+ unit attached to both alkynyl ligands of the {cis-Pt(C6F5)2(CCSiMe3)2}2− fragment. The structure of 3 has been established by X-ray diffraction.  相似文献   

15.
16.
A series of 2,4-dinitrophenyl 4-Y-phenyl disulfides (Y=NO2, Br, F, H, CH3, or CH3O) have been shown to react with trans-IrX(CO)(PPh3)2 (X=Cl, Br, or I) in refluxing benzene to form “oxidative-elimination” products of the type, [IrX(SC6h4Y)(SC6H3(NO2)2)(CO)(PPh3)]2. The physical properties of these complexes are discussed in relation to their structure in the solid state and in solution. In particular, available infrared spectral data indicate that these complexes contain 2,4-dinitrobenzenethiolato bridging groups and that the substituted arenethiolato ligand is trans to carbon monoxide.  相似文献   

17.
The complex mer-trans-[Mn(CO)3{P(OMe)2Ph}2X] (X = Cl, Br) is an intermediate in the conversion of fac-[Mn(CO)3{P(OMe)2,Ph}2,X] into mer- cis-[Mn(CO)2{P(OMe)2Ph}3X] in the presence of P(OMe)2Ph in benzene. No direct route between the latter two complexes could be detected kinetically. The results imply a trans carbonyl disposition as a prerequisite for higher carbonyl substitution in octahedral Mn1 carbonyl complexes.  相似文献   

18.
Five complexes of type cis-[PtCl2(PR3)Q] (PR3 =PMe3, PMe2Ph, PEt3; Q = CH2 CHOCOCH3 or CH2=CHCH2OCOCH3) have been prepared. The crystal structure of cis-[PtCl2[PME2Ph)(CH2=CHOCOCH3)] is described. Crystals of cis-[PtCl2(PME2Ph)(CH2-CHOCOCH3)] are triclinic, with a 8.441(4), b 13.660(5), c 7.697(3) Å, a 101.61(3)°, β 111.85(3)° γ 95.22(3)°, pP1, Z = 2. The structure was determined from 2011 reflections I σ 3σ (I) and refined to R = 0.037. The CH3COO grouping is syn to the cis-PMe2Ph ligand, with bond lengths of PtCl (trans to P) 2.367(3), PtCl (trans to olefin) 2.314(3), PtP 2.264(2), and PtC of 2.147(12) and 2.168(11) Å. The complexes cis-[PtCl2- (PR3)Q] were studied by variable temperature 1H and 31P NMR spectroscopy. Spectra of the vinyl acetate complexes were temperature dependent as a result of rotation about the platinum—olefin bond. The rotation was “frozen out” at ca. 240 K; for cis-[PtCl2(PME2Ph)(CH2=CHOCOCH3] ΔG≠ (rotation) 15.0 ± 0.2 kcal mol-1. NMR parameters for the rotamers are reported. NMR studies of the interaction between chloro-bridged complexes of type [Pt2Cl2(PR3)2] (PR3 = P-N-Pr3 or PMe2Ph) and vinyl acetate shows that even at low temperatures (213 K) equilibrium favours the bridged complex and the proportion of trans-[PtCl2(PR3)CH2=CHOCOCH3)] is very small e.g. 2%. The allyl acetate complexes cis-[PtCl2(PR3)(CH2=CHCH2OCOCH3)] showed only one rotamer over the range 333–213 K. Reversible dissociation of cis-[PtCl2(PMe2Ph)- (CH2=CHCH2OCOCH3)] to [Pt2Cl4(PMe2Ph)2] + allyl acetate was studied at ambient temperature. At low temperatures e.g. 213–190 K addition of allyl acetate to a CDCl3 solution of [Pt2Cl2(P-n-Pr3)2] reversibly gave some olefin complex trans-[PtCl2(P-n-Pr3)(CH2=CHCH2OCOCH3)] and some O-bonded complex trans-[PtCl2(P-n-Pr3)(CH2=CHCH2OCOCH3)].  相似文献   

19.
Addition of 1,4-dithiols to dichloromethane solutions of [PtCl2(P-P)] (P-P = (PPh3)2, Ph2P(CH2)3PPh2, Phd2P(CH2)4PPh2; 1,4-dithiols = HS(CH2)4SH, (−)DIOSH2 (2,3-O-isopropylidene-1,4-dithiol-l-threitol), BINASH2 (1,1′-dinaphthalene-2,2′-dithiol)) in the presence of NEt3 yielded the mononuclear complexes [Pt(1,4-dithiolato)(P-P)]. Related palladium(II) complexes [Pd(dithiolato)(P-P)] (P-P=Ph2P(CH2)3PPh2, Ph2P(CH2)4PPh2; dithiolato = S(CH2)4S, (−)-DIOS) were prepared by the same method. The structure of [Pt((−)DIOS)(PPh3)2] and [Pd(S(CH2)4S)(Ph2P(CH2)3PPh2)] complexes was determined by X-ray diffraction methods. Pt—dithiolato—SnC12 systems are active in the hydroformylation of styrene. At 100 atm and 125°C [Pt(dithiolate)(P-P)]/SnCl2 (Pt:Sn = 20) systems provided aldehyde conversion up to 80%.  相似文献   

20.
The complex [NiCl2(PMe3)2] reacts with one equivalent of mg(CH2CMe3)Cl to yield the monoalkyl derivative trans-[Ni(CH2CMe3)Cl(PMe3)2], which can be carbonylated at room temperature and pressure to afford the acyl [Ni(COCH2CMe3)Cl(PMe3)2]. Other related alkyl and acyl complexes of composition [Ni(R)(NCS)(PMe3)2] (R = CH2CMe3, COCH2CMe3) and [Ni(R)(η-C5H5)L] (L = PMe3, R = CH2CMe3, COCH2CMe3; L = PPh3, R = CH2CMe2Ph) have been similarly prepared. Dialkyl derivatives [NiR2(dmpe)] (R = CH2SiMe3, CH2CMe2Ph; dmpe = 1,2-bis(dimethylphosphine)ethane, Me2PCH2 CH2PMe2) have been obtained by phosphine replacement of the labile pyridine and NNN′N′-tetramethylethylenediamine ligands in the corresponding [Ni(CH2SiMe3)2(py)2] and [Ni(CH2CMe2Ph)2(tmen)] complexes. A single-crystal X-ray determination carried out on the previously reported trimethylphosphine derivative [Ni(CH2SiMe3)2(PMe3)2] shows the complex belongs to the orthorhombic space group Pbcn, with a = 14.345(4), b = 12.656(3), c = 12.815(3) Å, Z = 4 and R 0.077 for 535 independent observed reflections. The phosphine ligands occupy mutually trans positions P-Ni-P 146.9(3)° in a distorted square-planar arrangement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号