首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Acetamidomalondihydroxamate (K2AcAMDH) and its manganese(II), iron(II), cobalt(II), nickel(II), copper(II) and zinc(II) complexes were synthesized and characterized by elemental analysis, UV–VIS, IR and magnetic susceptibility. The pK a1 and pK a2 values of the dihydroxamic acid in aqueous solution were found to be 8.0?±?0.1 and 9.7?±?0.1. The dihydroxamate anion AcAMDH behaves as a tetradentate bridging ligand through both hydroxamate groups, forming complexes with a metal to ligand ratio of 1?:?1 in the solid state. The FTIR spectra and thermal decompositions of the ligand and its metal complexes were recorded. The redox behavior of the complexes was investigated in aqueous solution by square wave voltammetry and cyclic voltammetry at neutral pH. In contrast to the solid state, in solution the copper(II) and zinc(II) ions form stable complex species with a metal to ligand ratio of 1?:?2. The iron(II) and nickel(II) complexes show a two-electron irreversible reduction behavior, while the copper(II) and zinc(II) complexes undergo reversible electrode reactions. The stability constants of the complexes were determined by square wave voltammetry.  相似文献   

2.
Copper-catalyzed reaction of [Cp(PPh3)NiCl] with the terminal alkynes H-CC-C(O)R (R = O-Menthyl, NMe2, Ph) yields the alkynyl complexes [Cp(PPh3)Ni-CC-C(O)R]. Subsequent O-methylation with either [Me3O]BF4 or MeSO3CF3 affords cationic allenylidene complexes, [Cp(PPh3)NiCCC(OMe)R]+X¯ (X = BF4, SO3CF3). N-Alkylation of Cp(PPh3)Ni-pyridylethynyl complexes likewise gives cationic allenylidene complexes. [Cp(PPh3)Ni-CC-C(CH)4N] adds BF3 at nitrogen. Modification of the ligand sphere in these nickel allenylidene complexes is possible by replacing PPh3 by PMe3 in the alkynyl complex precursors. The first allenylidene(carbene)nickel cation, [Cp(SIMes)NCCC(OMe)NMe2]+, is accessible by successive reaction of [Cp(SIMes)NiCl] with H-CC-C(O)NMe2 and [Me3O]BF4. By the analogous sequence an allenylidene complex containing the chelating (diphenylphosphanyl)ethylcyclopentadienyl ligand can be prepared. DFT Calculations were carried out on the allenylidene complex cation [Cp(PPh3)NiCCC(OMe)NMe2]+ and on its precursor, the alkynyl complex [Cp(PPh3)Ni-CC-C(O)NMe2]. Based on the spectroscopic data and a X-ray structure analysis the bonding in the new nickel allenylidene complexes is best represented by several resonance forms, an alkynyl resonance form considerably contributing to the overall bond.  相似文献   

3.
The coordination characteristic of the investigated thiosemicarbazones towards hazard pollutants, Cd(II) and Hg(II), becomes the first goal. Their complexes have been studied by microanalysis, thermal, electrochemical and spectral (electronic, IR and MS) studies. The substitutent (salicylaldehyde, acetophenone, benzophenone, o-hydroxy-p-methoxybenzophenone or diacetylmonoxime) plays an important role in the complex formation. The coordination sites were the S for thiosemicarbazide (HTS); NN for benzophenone thiosemicarbazone (HBTS); NS for acetophenone thiosemicarbazone (HATS) and salicylaldehyde thiosemicarbazone (H(2)STS); NNS or NSO for diacetylmonoxime thiosemicarbazone (H(2)DMTS). The stability constants of Hg(II) complexes were higher than Cd(II). The kinetic and thermodynamic parameters for the different thermal decomposition steps in the complexes have been evaluated. The activation energy values of the first step ordered the complexes as: [Cd(H(2)STS)Cl(2)]H(2)O>[Cd(H(2)DAMTS)Cl(2)]>[Cd(HBTS)(2)Cl(2)]2H(2)O>[Cd(HATS)(2)Cl(2)]. The CV of [Cd(H(2)STS)Cl(2)]H(2)O and [Hg(HBTS)Cl(2)] were recorded. The use of H(2)DMTS as a new reagent for the separation and determination of Cd(II) ions from water and some synthetic samples using flotation technique is aimed to be discussed.  相似文献   

4.
The first phosphinooxazoline chelate complexes of iron were synthesized, and their structural and electronic properties were studied.The known phosphinooxazolines 2-(2-(diphenylphosphino)phenyl)-4,5-dihydrooxazole (7a), 2-(2-(diphenylphosphino)phenyl)-4,4-dimethyl-4,5-dihydrooxazole (7b), (S)-4-benzyl-2-(2-(diphenylphosphino)phenyl)-4,5-dihydrooxazole (7e) and (R)-2-(2-(diphenylphosphino)phenyl)-4-phenyl-4,5-dihydrooxazole (7f) were synthesized by a modified three step literature procedure with improved 67-60% overall yields. The new electronically tuned phosphinooxazolines 2-(5-bromo-2-(diphenylphosphino)phenyl)-4,4-dimethyl-4,5-dihydrooxazole (7c), 3-(4,4-dimethyl-4,5-dihydrooxazol-2-yl)-4-(diphenylphosphino)-N,N-dimethylaniline (7d) and 2-(2-(diphenylphosphino)-3-(trifluoromethyl)phenyl)-4,4-dimethyl-4,5-dihydrooxazole (7g) were synthesized in three to six steps with 59-29% overall yields. Reaction of 7a-f with CpFe(CO)2I (110 °C, 2 h, toluene) gave the iodide salts of the new iron phosphinooxazoline complexes [CpFe(CO)(7a-f)]+ in 87-21% yield. The new complexes were characterized by X-ray and the molecular structures confirm the octahedral coordination geometry and the half-sandwich structure about the iron center. The impact of different oxazoline ligands on the steric and electronic properties of their iron complexes was determined by analysis of selected bond lengths, νCO stretching frequency and the oxidation potentials of the ligands and the iron complexes.  相似文献   

5.
Polymeric copper(II), [Cu(μ-dpc)(μ-4-hymp)] n (1), and monomeric nickel(II), [Ni(dpc)(4-hymp)(H2O)2]·H2O (2), (dpc: dipicolinate, 4-hymp: 4-hydroxymethyl pyridine), dipicolinate complexes have been prepared and characterized by spectroscopic (IR, UV–Vis, EPR), thermal (TG/DTA), X-ray diffraction technique and electrochemical methods. In both the dipicolinate complexes, the dpc dianion acts as a tridentate ligand. In polymeric copper(II) complex, the 4-hymp and dpc ligands adopt a bridging position between the Cu(II) centers, forming the elongated octahedral geometry. The polymeric chains are linked to one another via O–H···O hydrogen bond interactions, forming the 3-D polymeric structure. The Ni(II) ion is bonded to dpc ligand through pyridine N atom together with one O atom of each carboxylate group, two aqua ligands and N pyridine atom of 4-hymp, forming the distorted octahedral geometry. The Ni(II) complexes are connected to one another via O–H···O hydrogen bonds, forming R 42(18) motifs in 2-D pattern. The powder EPR spectra of copper(II) complex have indicated that the paramagnetic center is in rhombic symmetry with the Cu2+ ion having distorted octahedral geometry. IR and UV–Vis spectroscopes all agree with the observed crystal structure.  相似文献   

6.
The preparation of the chloro complex trans-[FeCl2{(R,R)-diph}2] (1) and the alkynyl complexes trans-[M(4-CCC6H4R)Cl{(R,R)-diph}2] [M=Fe, R=NO2 (2); M=Ru, R=H (4), NO2 (5), (E)-CH=CH-4-C6H4NO2 (6); M=Os, R=NO2 (7)], incorporating the optically active diphosphine 1,2-bis(methylphenylphosphino)benzene (diph), are described. Oxidation potentials, as determined by cyclic voltammetry, increase as 2<7<5. Molecular quadratic nonlinearities by hyper-Rayleigh scattering at 1064 nm increase upon introduction of an acceptor group (4<5), chain-lengthening of bridging group (5<6), and proceeding from 3d to 4d and 5d metal (257). Two-level-corrected nonlinearities reproduce the first two trends, but metal variation follows the sequence 2<7<5. The experimental and two-level-corrected nonlinearities for 6 (2795×10−30 and 406×10−30 esu, respectively), are amongst the largest observed thus far for organometallic complexes. Crystals of complexes 2 and 7 exhibit second-harmonic generation (assessed using the Kurtz powder technique), with an efficiency for the former of twice that of urea.  相似文献   

7.
8.
The syntheses of new ball-type Co(II) phthalocyanines containing 4,4′-(9H-fluorene-9,9-diyl)diphenol substituents at non-peripheral (complex 6) and peripheral (complex 7) positions are presented. These complexes were characterized by UV-Vis, FT-IR, mass spectroscopy and electrochemical methods. Both complexes exhibit metal and ring based redox processes, typical of cobalt phthalocyanine complexes. For 6, the metal based reduction was observed at −0.46 V followed by a ring based reduction at −1.40 V. The metal oxidation for 6 was observed at +0.16 V and the ring based oxidation at +1.05 V. For 7, reductions are easier but the oxidations are more difficult. The metal based reduction for 7 was observed at −0.38 V followed by a ring based reduction at −1.03 V. The metal oxidation for 7 was observed at +0.20 V and the ring based oxidation at +1.35 V.  相似文献   

9.
A new series of acyclic mononuclear copper(II) complexes have been prepared by Schiff-base condensation derived from 5-methylsalicylaldehyde, diethylenetriamine, tris(2-aminoethyl) amine, triethylenetetramine, N,N-bis(3-aminopropyl)ethylene diamine, N,N-bis(aminopropyl) piperazine, and copper perchlorate. All the complexes were characterized by elemental and spectral analyses. Electronic spectra of the complexes show a d–d transition in the range 500–800?nm, electrochemical studies of the complexes show irreversible one-electron-reduction process around ?1.10 to ?1.60?V. The reduction potential of the mononuclear copper(II) complexes shifts toward anodic direction upon increasing the chain length of the imine compartment. ESR spectra of the mononuclear copper(II) complexes show four lines, characteristic of square-planar geometry, with nuclear hyperfine spin 3/2. The copper(II) complexes show a normal room temperature magnetic moment value μ eff?=?1.72–1.76?BM, close to the spin-only value of 1.73?BM. Electrochemical and catalytic studies of the complexes were compared on the basis of increasing the chain length of the imine compartment. All the complexes were screened for antifungal and antibacterial activities.  相似文献   

10.
The complexes trans-[Os(CCPh)Cl(dppe)2] (1), trans-[Os(4-CCC6H4CCPh)Cl(dppe)2] (2), and 1,3,5-{trans-[OsCl(dppe)2(4-CCC6H4CC)]}3C6H3 (3) have been prepared. Cyclic voltammetric studies reveal a quasi-reversible oxidation process for each complex at 0.36–0.39 V (with respect to the ferrocene/ferrocenium couple at 0.56 V), assigned to the OsII/III couple. In situ oxidation of 1–3 using an optically transparent thin-layer electrochemical (OTTLE) cell affords the UV–Vis–NIR spectra of the corresponding cationic complexes 1+–3+; a low-energy band is observed in the near-IR region (11 000–14 000 cm−1) in each case, in contrast to the neutral complexes 1–3 which are optically transparent below 20 000 cm−1. Density functional theory calculations on the model compounds trans-[Os(CCPh)Cl(PH3)4] and trans-[Os(4-CCC6H4CCPh)Cl(PH3)4] have been used to rationalize the observed optical spectra and suggest that the low-energy bands in the spectra of the cationic complexes can be assigned to transitions involving orbitals delocalized over the metal, chloro and alkynyl ligands. These intense bands have potential utility in switching nonlinear optical response, of interest in optical technology.  相似文献   

11.
12.
The synthesis of an α-substituted phthalocyanine oxo vanadium(IV) 1,4,8,11,15,18,22,25-octapentathiophthalocyanine (4) which absorbs at 850 nm in dichloromethane is reported. The complex is purple in colour and becomes green on reduction. The cyclic and square wave voltammetries of the complex show five redox couples. The spectroelectrochemical data showed only ring based processes. The ring reduced species is observed at wavelengths greater than 680 nm rather than the usual 500–600 nm range typical of ring reduced phthalocyanine complexes.  相似文献   

13.
The family of organometallic Co(III) benzonitrile derivatives of general formula [CoCp(dppe)(p-NCR)][PF6]2 (R = C6H4NMe2, C6H4NH2, C6H4OMe, C6H4C6H5, C6H5, C6H4C6H4NO2, and C6H4NO2) have been synthesized. Spectroscopic and electrochemical data were analyzed in order to evaluate the extent of electronic coupling between the organometallic fragment and the nitrile ligands. An attempt of correlation between NMR spectroscopic data and the second-order non-linear optical properties is presented, based on this work and available published data for related η5-monocyclopentadienyliron, ruthenium and nickel complexes.  相似文献   

14.
The study of the reactivity of [Pt2M4(CCR)8] (M=Ag or cu; R=Ph or tBu) towards different neutral and anionic ligands is reported. This study reveals that reactions of the phenylacetylide derivatives [Pt2M4(CCPh)8] with anionic, X (X=Cl or Br) or neutral donors (CNtBu or py) in a molar ratio 1:4 (m/donor ratio 1:1) yield the trinuclear anionic (NBu4)2[{Pt(CCPh)4 (MX)2] (M=Ag or Cu, X =Cl or Br) or neutral [{Pt(CCPh04=sAGL)2] (L=CNtBu or py) complexes, respectively. The crystal structure of (NBu4)2[{Pt(CCPh)4}(CuBr)2](4) shows that the anion is formed by a dianionic Pt(CCPh)4 fragment and two neutral CuBr units joined through bridging alkynyl ligands. All the alkynyl groups are σ bonded to Pt and η2-coordinated to a Cu atom which have an approximately trigonal-planar geometry. By contrast, similar reactions with [Pt2M4(CCtBu)8] (molar ratio M/donor 1:1) afford hexanuclear dianionic (NBu4)2[Pt2M4(CCtBu)8X2] or neutral [Pt2Ag4(CCtBu08Py2]. Only by treatment with a large exces of Br (molar ratio M/Br 1:2) are the trinuclear complexes (NBu4)2[{Pt(CCtBu4 (MBr)2] (M=Ag, Cu) obtained. Attempted preparations of analogous complexes with phosphines (L′=PPh3 or PEt3) by reactions of [Pt2M4(CCR8] with L′ leads to displacement of alkynyl ligands from platinum and formation of neutral mononuclear complexes [trans-Pt(CCR)2L′2].  相似文献   

15.
The syntheses, spectroscopic and electrochemical properties of manganese (3), nickel (4) and iron (5) phthalocyanine complexes, octa-substituted at the peripheral positions with diethlyaminoethanethiol substituent, are reported. The electrochemistry of these complexes and the corresponding cobalt complex (6) are reported. Complex 3 showed two reversible reduction couples attributed to the MnIIIPc2/MnIIPc2 (E½ = −0.12 V versus Ag|AgCl) and MnIIPc2/MnIIPc3 (E½ = −0.82 V versus Ag|AgCl) species. Two ring-based reduction couples were also observed for complex 4. Two reduction couples, assigned to the FeIIPc2/FeIPc2 (E½ = −0.35 V versus Ag|AgCl) and FeIPc2/FeIPc3 (E½ = −0.96 V versus Ag|AgCl) species, and an oxidation couple, attributed to FeIIIPc2/FeIIPc2 (E½ = 0.26 V versus Ag|AgCl) species, were observed. For complex 6, two reductions and one oxidation were also observed with the potential range of 1.2 to −1.8 V versus Ag|AgCl Spectroelectrochemical studies were used to confirm some of the assigned processes.  相似文献   

16.
A systematic series of η5-monocyclopentadienyliron(II) complexes with substituted oligo-thiophene nitrile ligands of general formula [FeCp(P_P)(NC{SC4H2}nNO2)][PF6] (P_P = dppe, (+)-diop; n = 1-3) has been synthesized and characterized. The electrochemical behaviour of the new compounds was explored by cyclic voltammetry. Quadratic hyperpolarizabilities (β) of the complexes with dppe coligands have been determined by hyper-Rayleigh scattering (HRS) measurements at two fundamental wavelengths of 1.064 and 1.550 μm, to uncover the two-photon resonance effect and to estimate static β values. The obtained overall results are found to be better than for the related η5-monocyclopentadienyliron(II) complexes with p-benzonitrile derivatives. Although an increase of the resonant β at 1.064 μm with increasing number of thiophene units in the conjugated ligand was found (up to 910 × 10−30 esu), the static values β0 remain practically unchanged, as shown by the 1.550 μm measurements. Combined with the electrochemical and spectroscopic data (IR, NMR, UV-vis), this remarkable evolution of β shows that the increase of conjugation length is balanced by a decrease in charge-transfer efficiency.  相似文献   

17.
Two new potentially octadentate N2O6 Schiff-base ligands 2-((E)-(2-(2-(2-((E)-2-hydroxy-3-methoxybenzylideneamino)phenoxy)phenoxy)phenylimino)methyl)-6-methoxyphenol H2L1 and 2-((E)-(2-(2-(2-((E)-2-hydroxy-3-methoxybenzylideneamino)phenoxy)-4-tert-butylphenoxy)phenylimino)methyl)-6-methoxyphenol H2L2 were prepared from the reaction of O-Vaniline with 1,2-bis(2′-aminophenoxy)benzene or 1,2-bis(2′-aminophenoxy)-4-t-butylbenzene, respectively. Reactions of H2L1 and H2L2 with copper(II) and zinc(II) salts in methanol in the presence of N(Et)3 gave neutral [CuL1]?·?0.5CH2Cl2, [CuL2], [ZnL1]?·?0.5CH2Cl2, and [ZnL2] complexes. The complexes were characterized by IR spectra, elemental analysis, magnetic susceptibility, ESI–MS spectra, molar conductance (Λm), UV-Vis spectra and, in the case of [ZnL1]?·?0.5CH2Cl2 and [ZnL2], with 1H- and 13C-NMR. The crystal structure of [ZnL1]?·?0.5CH2Cl2 has also been determined showing the metal ion in a highly distorted trigonal bipyramidal geometry. The electrochemical behavior of H2L2 and its Cu(II) complex, [CuL2], was studied and the formation constant of [CuL2] was evaluated using cyclic voltammetry. The logarithm value of formation constant of [CuL2] is 21.9.  相似文献   

18.
A series of N-heterocyclic dicarbene palladium(II) complexes has been characterised combining different techniques (cyclic voltammetry, XPS and 13C NMR spectroscopy), in order to evaluate the influence of the dicarbene ligand on the electronic properties of the metal centre. The data obtained with the three techniques give relevant information, cyclic voltammetry appearing the most useful approach. In addition, the observed variations of the physico-chemical properties of the complexes confirm the possibility of finely tuning the electronic properties of the palladium(II) centre by changing the characteristics of the dicarbene ligand (wingtip substituents, bridging group between the carbene units, type of heterocyclic ring).  相似文献   

19.
The coordination of organochalcogen (especially Se and Te) substituted Schiff-bases L1H, L2H, L3H, and L4H toward Zn(II) and Hg(II) has been studied. Reactions of these ligands with ZnCl2 in 1?:?1 molar ratio gave binuclear complexes [{2-[PhX(CH2) n N?=?C(Ph)]-6-[PhCO]-4-MeC6H2O}2Zn2Cl2] (where X?=?Se, n?=?2 (1); X?=?Se, n?=?3 (2); X?=?Te, n?=?2 (3); and X?=?Te, n?=?3 (4)) with partial hydrolytic cleavage of proligands. In these complexes, two partially hydrolyzed ligand fragments coordinate tridentate (NOO) with two Zn's. Reaction of HgBr2 with L1H and L2H in 1?:?1 molar ratio gave monometallic complexes [C6H2(4-Me)(OH)[2,6-{C(Ph)?=?N(CH2) n Se(Ph)}2HgBr2]] (n?=?2 (5) or 3 (6)) and under similar conditions with L3H and L4H gave bimetallic complexes [C6H2(4-Me)(OH)[2,6-{C(Ph)?=?N(CH2) n Te(Ph)}2Hg2Br4]] (n?=?2?(7) or 3 (8)) in which the ligands coordinate with metal through selenium or tellurium, leaving the imino nitrogen and phenolic oxygen uncoordinated. The proligands L1H, L2H give 14- or 16-membered metallamacrocycles through Se–Hg–Se linkages and L3H, L4H give 16- or 18-membered metallamacrocycles through Te–Hg–Br–Hg–Te linkages. All the complexes were characterized by elemental analyses, ESIMS, FTIR, multinuclear NMR, UV-Vis, and conductance measurements. The redox properties of the complexes were investigated by cyclic voltammetry (CV). Complexes 14 exhibited ligand-centered irreversible oxidation processes. Complexes 5 and 6 showed metal-centered quasi-reversible single electron transfer, whereas dinuclear complexes 7 and 8 displayed two quasi-reversible, one-electron transfer steps. A single-crystal X-ray structure determination of 1 showed that the coordination unit is centrosymmetric with Zn(II) in square-pyramidal coordination geometry and the two square pyramids sharing an edge. The Zn?···?Zn separation is 3.232?Å. The DNA-binding properties of 1 and 3 with calf thymus DNA were explored by a spectrophotometric method and CV.  相似文献   

20.
Two mononuclear Cu(II) complexes, [Cu(L1H2)](ClO4)1.25Cl0.75·1.25H2O (1) and [Cu(L2H2)](ClO4)2 (2), of the pyridoxal Schiff base ligands N,N′-dipyridoxylethylenediimine (L1H2) and N,N′-dipyridoxyl-1,3-propanediimine (L2H2) are reported. X-ray crystal structures of both complexes are also reported. In both complexes the pyridoxal nitrogen atoms remain protonated. In the solid state, the tetradentate Schiff base ligand is virtually planar in 1, while in 2 the ligand conformation is like an inverted umbrella. In cyclic voltammetry experiments it is found that in these complexes the Cu(III) and Cu(I) states are more easily accessible than in their salen type analogs. The pyridoxal Schiff base complexes are also found to be resistant to oxidative electro-polymerization, unlike their corresponding salicyl aldehyde Schiff base complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号