首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Previous work has demonstrated the possibility of crcating chiral stationary phases by coating a suitable support material via the mobile phase. The result is a wide variety of chiral phase systems which can be used in liquid chromatogrphy to separate enantiomers by a liquid-solid adsorption mechanism. The present paper demonstrates the potential of this technique for chiral crown ethers incorporating an -D-mannopyranoside unit using the separation of phenyglycine enantiomers as an example.  相似文献   

2.
We report herein a novel approach involving optical resolution of (±)-1,16-dihydroxytetraphenylene (DHTP) by chiral gold(iii) complexation. This method features several key advantages, i.e., recyclability of chiral resolution reagents, feasibility of scaling up to gram quantities, and operational simplicity. On the basis of this method, which led to optically pure DHTP, a library of 2,15-diaryl (S)-DHTPs and several (S)-DHTP-derived phosphoramidite ligands were synthesized. Finally, the superior performance of a (S)-DHTP phosphoramidite ligand was demonstrated by efficient iridium-catalyzed asymmetric allylic alkynylation reactions.

Chiral gold(iii) complex was found to be a “golden key” to unlock (±)-1,16-dihydroxytetraphenylene (DHTP), leading to enantiopure DHTP in a large quantity. This approach provided convenient access to 2,15-diaryl (S)-DHTPs and phosphoramidites.  相似文献   

3.
Enantioselective electrocatalyzed transformations represent a major challenge. We herein achieved atropoenantioselective pallada-electrocatalyzed C–H olefinations and C–H allylations with high efficacy and enantioselectivity under exceedingly mild reaction conditions. With (S)-5-oxoproline as the chiral ligand, activated and non-activated olefins were suitable substrates for the electro-C–H activations. Dual catalysis was devised in terms of electro-C–H olefination, along with catalytic hydrogenation. Challenging enantiomerically-enriched chiral anilide scaffolds were thereby obtained with high levels of enantio-control in the absence of toxic and cost-intensive silver salts. The resource-economy of the transformation was even improved by directly employing renewable solar energy.

Asymmetric pallada-electrocatalyzed C–H activation of achiral anilides were accomplished by catalyst control with high levels of enantioselectivity. Dual catalysis was devised, while photovoltaic cells could be used to empower the electrocatalysis.  相似文献   

4.
5.
The activity and enantiomeric excess (ee) (in some cases >85%) obtained for the asymmetric addition of trimethylsilyl cyanide to aldehydes using different heterogeneous chiral catalysts are compared. A library of recoverable catalysts was developed by immobilization of a chiral vanadyl salen complex having a terminal carbon-carbon double bond onto a series of scaffolds including silica, single-wall carbon nanotubes, activated carbon and room-temperature ionic liquids. The covalent linkage has been achieved by radical initiated addition of mercapto groups to CC. The highest enantiomeric excesses, similar to those obtained in the homogeneous phase, were achieved using silica as support or with the homogeneous tetra-tert-butyl salen catalyst dissolved in an imidazolium ionic liquid. The use of silica as support permits an easier separation and reuse of the catalyst from the reaction media.  相似文献   

6.
We report on silver–gold core-shell nanostructures that contain Methylene Blue (MB) at the gold–silver interface. They can be used as reporter molecules in surface-enhanced Raman scattering (SERS) labels. The labels are stable and have strong SERS activity. TEM imaging revealed that these nanoparticles display bright and dark stripe structures. In addition, these labels can act as probes that can be detected and imaged through the specific Raman signatures of the reporters. We show that such SERS probes can identify cellular structures due to enhanced Raman spectra of intrinsic cellular molecules measured in the local optical fields of the core-shell nanostructures. They also provide structural information on the cellular environment as demonstrated for these nanoparticles as new SERS-active and biocompatible substrates for imaging of live cells.
Figure
The synthesis of MB embedded Ag/Au CS NPs ,and the results of these NPs were used in probing and imaging live cells as SERS labels  相似文献   

7.
The synthesis of various trifluoromethylated amino compounds was studied using trifluoroacetaldehyde, an industrial bulk material, as a starting compound. One general application of trifluoroacetaldehyde is the preparation of trifluoroethylamino derivatives via reductive amination reaction. This synthesis includes the formation of the corresponding N,O-acetal intermediates followed by their reduction using NaBH4 or 2-picoline borane complex, affording the target trifluoroethylamino compounds in moderate to good yields (47-87%).Another general application of trifluoroacetaldehyde is the synthesis of chiral α-substituted trifluoroethylamino compounds. In this synthesis, trifluoroacetaldehyde was first converted into the chiral trifluoromethyl tert-butyl sulfinimine, which was subjected to 1,2-nucleophilic addition reactions across its CN double bond. The addition of phenyllithium afforded α-(phenyl)trifluoroethylamino derivative in 83% yield and with 96% de. Allylation and Reformatsky reactions produced the corresponding α-substituted trifluoroethylamino derivatives in 82 and 58% yields and with 90 and 91% de, respectively.  相似文献   

8.
The synthesis and structural characterization of the first ruthenium phosphoramidite allenylidene complexes that are chiral at the metal are described. The precursor complex [RuCl(Ind)(PPh3)2] (Ind = indenyl anion) was reacted with 1 equiv of different chiral phosphoramidite ligands L to give complexes of the general formula [RuCl(Ind)(PPh3)L]. These complexes are stereogenic at the metal and at the ligand L. One of these complexes was obtained in diastereomeric purity, and was subsequently converted to allenylidene complexes of the general formula [RuCCCR′R(Ind)(PPh3)L]+PF6 (R = R′ = Ph; R = Ph, R′ = Me) in diastereomeric purity. As shown by X-ray, the chiral information is completely transferred from the precursor complex to the allenylidenes, which is of importance for potential catalytic applications.  相似文献   

9.
As in transition metal complexes, CN-R ligands adsorbed on powdered gold undergo attack by amines to give putative diaminocarbene groups on the gold surface. This reaction forms the basis for the discovery of a gold metal-catalyzed reaction of CN-R, primary amines (R′NH2) and O2 to give carbodiimides (R′-NCN-R). An analogous reaction of CO, RNH2, and O2 gives isocyanates (R-NCO), which react with additional amine to give urea (RNH)2CO products. The gold-catalyzed reaction of CN-R with secondary amines (HNR′2) and O2 gives mixed ureas RNH(CO)NR′2. In another type of gold-catalyzed reaction, secondary amines HN(CH2R)2 react with O2 to undergo dehydrogenation to the imine product, RCHN(CH2R). Of special interest is the high catalytic activity of gold powder, which is otherwise well-known for its poor catalytic properties.  相似文献   

10.
New mesogenic compounds containing a cholesteryl ester and a pyrimidine moiety connected through a polymethylene spacer have been prepared. The mode of linkage has been made via -CC- and -CN- to understand the structure-property relationship. Only two compounds with a pentamethylene spacer show mesomorphic behaviour. The mesomorphic behaviour has been investigated by polarizing optical microscopy, differential scanning calorimetry and HRXRD studies. Enantiotropic smectic A, twist grain boundary (TGB) and chiral nematic mesophases are exhibited by the newly synthesized compounds.  相似文献   

11.
In the most general practice of asymmetric catalysis, a chiral catalyst, typically bearing a center or an axis of chirality, is employed as the chiral source for imparting enantiocontrol over the developing product. Given the current interest toward optically pure compounds, various forms of chiral induction enabled by diverse chiral sources as well as the use of multiple catalysts under one-pot conditions have been in focus. In one such promising development, an achiral N-sulfonamide protected 1,6-amino allyl alcohol (NaphSO2NHCH2C(Ph)2CH2CH Created by potrace 1.16, written by Peter Selinger 2001-2019 CHCH2OH) was subjected to Tsuji–Trost activation and an intramolecular amination to form important chiral pyrrolidine frameworks. A dual catalytic system comprising Pd(PPh3)4 and DAPCy (β-cyclohexyl substituted double axially chiral phosphoric acid derived from two homocoupled BINOL backbones with a dynamic central chiral axis) under mild conditions was reported to offer quantitative conversion with an ee of 95%. Here, we provide molecular insights into the origin of chiral induction by DAPCy, as obtained through a comprehensive density functional theory (SMD(toluene)/B3LYP-D3/6-31G**,Pd(SDD)) investigation. Two key steps in the mechanism are identified to involve a cooperative mode of activation of the Pd-bound allyl alcohol in the form of a Pd-π-allyl moiety at one end of the substrate, followed by an intramolecular nucleophilic addition of N-sulfonamide from the other end to yield a pyrrolidine derivative bearing an α-vinyl stereogenic center. (S,R,S)-DAPCy is found to steer the dehydroxylation to yield a Pd-π-allyl intermediate with a suitably poised si prochiral face for the nucleophilic addition. In the enantiocontrolled (as well as the turn-over determining step) nucleophilic addition, the chiral catalyst is identified to serve as a chiral phosphate counterion. The chiral induction is facilitated by a series of N–H⋯O, C–H⋯O, C–H⋯π, lone pair (lp)⋯π, O–H⋯O, O–H⋯π, and π⋯π noncovalent interactions, which is noted as more effective in the lower energy C–N bond formation transition state through the si prochiral face of the Pd-π-allyl moiety. These insights into the novel dynamic axially double chiral catalyst could be valuable toward exploiting such modes of stereoinduction.

The origin of enantiocontrol in an intramolecular amination involving Pd(PPh3)4 and a double axially chiral phosphoric acid (DAPCy) dual catalytic system is traced to a more effective series of noncovalent interactions in the lower energy C–N bond formation transition state.  相似文献   

12.
Golden fullerenes have recently been identified by photoelectron spectra by Bulusu et al. [S. Bulusu, X. Li, L.‐S. Wang, X. C. Zeng, PNAS 2006 , 103, 8326–8330]. These unique triangulations of a sphere are related to fullerene duals having exactly 12 vertices of degree five, and the icosahedral hollow gold cages previously postulated are related to the Goldberg–Coxeter transforms of C20 starting from a triangulated surface (hexagonal lattice, dual of a graphene sheet). This also relates topologically the (chiral) gold nanowires observed to the (chiral) carbon nanotubes. In fact, the Mackay icosahedra well known in gold cluster chemistry are related topologically to the dual halma transforms of the smallest possible fullerene C20. The basic building block here is the (111) fcc sheet of bulk gold which is dual to graphene. Because of this interesting one‐to‐one relationship through Euler's polyhedral formula, there are as many golden fullerene isomers as there are fullerene isomers, with the number of isomers Niso increasing polynomially as ). For the recently observed , , and we present simulated photoelectron spectra including all isomers. We also predict the photoelectron spectrum of . The stability of the golden fullerenes is discussed in relation with the more compact structures for the neutral and negatively charged Au12 to Au20 and Au32 clusters. As for the compact gold clusters we observe a clear trend in stability of the hollow gold cages towards the (111) fcc sheet. The high stability of the (111) fcc sheet of gold compared to the bulk 3D structure explains the unusual stability of these hollow gold cages.  相似文献   

13.
The asymmetric [4+2] Diels-Alder reaction involving 3,4-dimethyl-1-phenylphosphole, DMPP, as the cyclic diene and its P-sulfonated analogue DMPPS as the dienophile was carried out by utilizing the palladium(II) template complex containing ortho-metalated (R)-(1-(dimethylamino)ethyl)naphthalene as the chiral auxiliary. The reaction proceeded regiospecifically and stereoselectively to give corresponding phosphanorbornene ligand as the major product. Throughout the cycloaddition reaction, DMPP functions chemoselectively as the cyclic diene whilst DMPPS assumes the role of dienophile. The absolute stereochemistry of the novel chiral heteroditopic ligand was established by means of single crystal X-ray diffraction analysis.  相似文献   

14.
<正>1 General methods Unless otherwise noted, all reactions and manipulations involving air- or moisture-sensitive compounds were performed using standard Schlenk techniques or in a glovebox. All solvents were purified and dried using standard procedures. Melting points were measured on a RY-I apparatus and uncorrected. 1H, 13 C, 31 P and 19 F NMR spectra were recorded on Varian Mercury 300 or 400 MHz spectrometers. Chemical shifts(δ values) were reported in ppm downfield from internal TMS(1H NMR), CDCl3(13C NMR), external 85% H3PO4(31P NMR), and external CF3CO2H(19F NMR), respectively. Optical rotations were determined using a Perkin Elmer 341 MC polarimeter. The IR spectra were measured on a BRUKER TENSOR 27  相似文献   

15.
Layer-by-layer self-assembly was used to prepare nanofilms of (2:1) MgAl-layered double hydroxide (LDH) nanoparticles and polyacrylic acid or sodium polystyrene sulfonate. The multilayers were attached to ~50-nm thick gold films on microscopy glass slides prepared by vacuum evaporation. The contact between the gold film and the multilayered films was mediated via surface modification with thiols, adsorption of poly(diallyl dimethyl ammonium) chloride (PDDA) or direct binding of the LDH particles. Surface plasmon resonance (SPR) spectra of the multilayered films were analyzed by fitting the Fresnel equations. The shifts in the SPR angle (SPR) due to the adsorption/deposition on the gold surface were used to evaluate the process of building up the multilayers. Strong surface/multilayer contact formed when electrostatic attraction and hydrophobic interaction were combined as in the case of mercaptopropanoic acid or PDDA sticking layers. The LDH suspension concentration strongly influenced the number of deposited layers. The multilayer films were investigated by reflection FT-IR spectroscopy.  相似文献   

16.
We prepared chiral supports whose chiral stationary phase (CSP), consisting of a low-molecular-weight cellulose derivative (degree ofpolymerization: 15), is covalently bonded to silica gel. The cellulose used asthe base material of the CSP was pre-hydrolysed with phosphoric acid before thecoupling reaction to unite a reducing terminal in the cellulose and anaminopropyl group on the surface of silanized silica. After substitutinghydroxyl groups in cellulose by using 3,5-dichlorophenyl isocyanate or phenylisocyanate, we tested the CSP thus obtained for its performance in chiralrecognition and found a wide range of chiral discrimination ability. We alsoconfirmed that an elution using strong solvents as a mobile phasecould be achieved, which is difficult for the coated-type CSPs because themobile phase may dissolve the CSP. However, more enantiomeric mixtures showedlarger selectivity factors () when eluted on the coated-type CSPs thanonthe covalently bonded CSPs. A coated-type CSP consisting of thelow-molecular-weight cellulose phenylcarbamate, prepared as a control CSPsample, showed comparable performance with the commercial coated-type column(CHIRALCEL® OC), so the slightly poorer performance ofthe chemically bonded CSPs may be explained by the difficulty of the polymerconsisting of the CSPs in taking an optimal supermolecular structure requiredfor chiral recognition due to the fixation to the silica gel. The lowdegreeof polymerization may have an additional effect.  相似文献   

17.
Monolayer protected metal clusters are dynamic nanoscale objects. For example, the chiral Au38(2-PET)24 cluster (2-PET: 2-phenylethylthiolate) racemizes at moderate temperature. In addition, ligands and metal atoms can easily exchange between clusters. Such processes are important for applications of monolayer protected metal clusters; however, the mechanistic study of such processes turns out to be challenging. Here we use a configurationally labile, axially chiral ligand, biphenyl-2,2′-dithiol (R/S-BiDi), as a probe to study dynamic cluster processes. It is shown that the ligand exchange of free R/S-BiDi on a chiral Au38(2-PET)24 cluster is diastereospecific. Using chiral chromatography, isolated single diastereomers of the type anticlockwise/clockwise-Au38(2-PET)22(R/S-BiDi)1 could be isolated. Upon heating, the cluster framework racemizes, while the R/S-BiDi ligand does not. These findings demonstrate that during cluster racemization and/or ligand exchange between clusters, the R/S-BiDi ligand is sufficiently confined, thus preventing its racemization, and exclude the possibility that the ligand desorbs from the cluster surface.

The ligand exchange between a configurationally labile BiDi ligand and intrinsically chiral Au38 gold nanoclusters is diastereoselective. More importantly, the adsorbed ligand retains its configuration during dynamic cluster processes.  相似文献   

18.
Cyclopalladation of the Schiff bases of general formula McCHN-CH(Me)Fc (McFc, Ru) (1a,b) with a chiral centre leads to the mixtures of three products, two of which (2 and 3) are planar chiral diastereomers formed from homoannular substitution into the aldehyde fragment. The third product 4 is a result of the unusual heteroannular palladation of the amine fragment in starting aldimine. This ansa-structure 4 having 3-atomic C-N-Pd bridge is without precedent in metallocenes. The molecular structures of all organopalladium compounds obtained have been proved using X-ray analysis of single crystals.  相似文献   

19.
Parkinson''s disease (PD) is an age-related neurodegenerative disease, and the removal of senescent cells has been proved to be beneficial for improving age-associated pathologies in neurodegeneration disease. In this study, chiral gold nanoparticles (NPs) with different helical directions were synthesized to selectively induce the apoptosis of senescent cells under light illumination. By modifying anti-B2MG and anti-DCR2 antibodies, senescent microglia cells could be cleared by chiral NPs without damaging the activities of normal cells under illumination. Notably, l-P+ NPs exhibited about a 2-fold higher elimination efficiency than d-P NPs for senescent microglia cells. Mechanistic studies revealed that the clearance of senescent cells was mediated by the activation of the Fas signaling pathway. The in vivo injection of chiral NPs successfully confirmed that the elimination of senescent microglia cells in the brain could further alleviate the symptoms of PD mice in which the alpha-synuclein (α-syn) in cerebrospinal fluid (CFS) decreased from 83.83 ± 4.76 ng mL−1 to 8.66 ± 1.79 ng mL−1 after two months of treatment. Our findings suggest a potential strategy to selectively eliminate senescent cells using chiral nanomaterials and offer a promising strategy for alleviating PD.

The apoptosis pathways of senescent microglia cells induced by chiral NPs under the irradiation of 808 nm laser in the brain of PD mice.  相似文献   

20.
This study demonstrated that alkylation of chiral glycine Schiff base 3 with chloride 4 can be efficiently conducted in acetonitrile as a solvent using commercial-grade potassium tert-butoxide as a base. High reaction rate (1 h) chemical (>90%) and stereochemical (>95% de) outcomes of the alkylation step render this procedure reliable and operationally convenient for multi-gram synthesis of enantiomerically pure amino acid 1. Due to the simplicity of experimental procedures and commercial availability all reagents involved, this procedure can be easily reproduced in regular biochemistry laboratories allowing for systematic biological studies and medicinal applications of compound 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号