首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two new amido binuclear complexes {(1)YN(SiMe3)2}2 · C7H8 (3 · C7H8) and {(2)SmN(SiMe3)2}2 · C6H14 (4 · C6H14) have been readily prepared in good yields by amine elimination reaction between Ln[N(SiMe3)2]3 (Ln = Sm, Y) and chiral NNO ligands, (S)-2-(pyridin-2-ylmethylamino)-2′-hydroxy-1,1′-binaphthyl (1H2) and (S)-5,5′,6,6′,7,7′,8,8′-octahydro-2-(pyrrol-2-ylmethyleneamino)-2′-hydroxy-1,1′-binaphthyl (2H2), respectively. They both have been characterized by various spectroscopic techniques, elemental analyses, and X-ray diffraction analyses. They are active catalysts for asymmetric hydroamination/cyclization of aminoalkenes and ring-opening polymerization of rac-lactide, affording cyclic amines in excellent conversions with moderate ee values and isotactic-rich polylactides, respectively.  相似文献   

2.
Addition of R′2PCl to anilines substituted with di- or trimethylcyclopentadienyl unit at ortho-position affords ortho-phenylene-bridged Me2Cp or Me3Cp/phosophinoamide ligands, 2-(RMe2C5H2)C6H4NHPR′2 (R = Me or H; R′ = Ph, iPr, or Cyclohexyl). Successive addition of Ti(NMe2)4 and Me2SiCl2 to the ligands affords the desired dichlorotitanium complexes, [2-(η5-RMe2C5H)C6H4NPR′ 2κ2N,P]TiCl2 (R = H, R′ = Ph, 9; R = Me, R′ = Ph, 10; R = H, R′ = iPr, 11; R = Me, R′ = iPr, 12; R = H, R′ = Cy, 13; R = Me, R′ = Cy, 14). By using Zr(NMe2)4 instead of Ti(NMe2)4, a zirconium complex, [2-(η5-Me3C5H)C6H4NP(iPr)2κ2N,P]ZrCl2 (15) is prepared. Molecular structures of 10, 14 and [2-(η5-Me2C5H2)C6H4NPPh2κN]Ti(NMe2)2 (16) were determined. The metric parameters determined on the X-ray crystallographic studies and the chemical shifts of the 31P NMR signal indicate that the phosphorous atom coordinates to the titanium in the dichloro-complexes 9-15. The titanium and zirconium complexes show negligible activity in ethylene and ethylene/1-hexene (co)polymerization when activated with MAO or iBu3Al/[Ph3C][B(C6F5)4].  相似文献   

3.
The complex [(η5-C5H5)Ru(PPh3)2Cl] (1) reacts with several arylazoimidazole (RaaiR′) ligands, viz., 2-(phenylazo)imidazole (Phai-H), 1-methyl-2-(phenylazo)imidazole (Phai-Me), 1-ethyl-2-(phenylazo)imidazole (Phai-Et), 2-(tolylazo)imidazole (Tai-H), 1-methyl-2-(tolylazo)imidazole (Tai-Me) and 1-ethyl-2-(tolylazo)imidazole (Tai-Et), gave complexes of the type [(η5-C5H5)Ru(PPh3)(RaaiR′)]+ {where R, R′ = H (2), R = H, R′ = CH3 (3), R = H, R′ = C2H5 (4), R = CH3, R′ = H (5), R, R′ = CH3 (6), R = CH3, R′ = C2H5 (7)}. The complex [(η5-C9H7)Ru(PPh3)2(CH3CN)]+ (8) undergoes reactions with a series of N,N-donor azo ligands in methanol yielding complexes of the type [(η5-C9H7) Ru(PPh3)(RaaiR′)]+ {where R, R′ = H (9), R = H, R′ = CH3 (10), R = CH3, R′ = H (11), R = CH3, R′ = C2H5 (12)}, respectively. These complexes were characterized by FT IR and FT NMR spectroscopy as well as by analytical data. The molecular structure of the complex [(η5-C5H5)Ru(PPh3)(C6H5-NN-C3H3N2)]+ (2) was established by single crystal X-ray diffraction study.  相似文献   

4.
The enantioselective alkynylation of aldimines with terminal acetylenes catalyzed by chiral Cu(I) complexes with (R)-2,2′-di(2-aminoaryloxy)-1,1′-binaphthyl ligands (7) was examined. Chiral C2-symmetric N,N-ligands 7, which have primary aniline moieties, were readily prepared from inexpensive (R)-1,1′-binaphthol (BINOL) as a chiral source. In particular, the reaction of N-benzylidenebenzeneamine 1a with phenylacetylene 2a proceeded smoothly in the presence of 5 mol % of (CuOTf)2·C6H5CH3 and 10 mol % of (R)-7d at room temperature for 24 h, and the corresponding propargylamine 3a was obtained with up to 82% ee.  相似文献   

5.
A series of benzylideneanilines bearing terminal polyether chains, HL (HL = R-C6H4-CHN-C6H4-R′: R = OC8H17, R′ = O(CH2CH2O)2C2H5; R = O(CH2CH2O)2C2H5, R′ = OC8H17; R = R′ = O(CH2CH2O)2C2H5; R = OC12H25, R′ = O(CH2CH2O)3C2H5; R = O(CH2CH2O)3C2H5, R′ = OC12H25; R = R′ = O(CH2CH2O)3C2H5) have been prepared. Their dinuclear, [Pd(μ-X)L]2 (X = OAc, Cl, Br, SC8), [Pd2(μ-SCn)(μ-X)L2] (X = OAc, Cl; n = 8, 2) and mononuclear orthopalladated derivatives, Pd(acac)L, Pd(Ala)L, are reported and their mesogenic properties are compared with those of the analogous compounds with alkoxy chains. In general a great lowering in the melting points is produced for all the products. The free ligands and the alanine complexes are not liquid crystals. The chloro-bridged complexes bearing alkoxy and short polyether chains (O(CH2CH2O)2C2H5) show the larger improvement of mesogenic properties. Longer polyether chains (O(CH2CH2O)3C2H5) result usually in a destabilization of the mesophases. If only polyether chains are present, the destabilization is important regardless of the chain length. The ability of these molecules as ionic extractants and transporters was qualitatively evaluated for the more propitious cis-dinuclear complexes, which in fact showed some extracting ability, modest but improved compared to the free ligands.  相似文献   

6.
We have designed and synthesized three new metal-1,1′-ferrocenedicarboxylate complexes containing tetrametallic macrocyclic building units, namely, [Cd22-O2CFcCO22)2(phen)2(H2O)2] · 4CH3OH (1) (Fc = (η5-C5H4)Fe(C5H45), phen = 1,10-phenanthroline), {[Cd(η2-O2CFcCO2)(pebbm)(H2O)] · 2H2O}n (2) (pebbm = 1,1′-(1,5-pentanediyl)bis-1H-benzimidazole) and {[Cd(η2-O2CFcCO22)(prbbm)(H2O)] · 3H2O}n (3) (prbbm = 1,1′-(1,3-propanediyl)bis-1H-benzimidazole). Compound 1 is a 0-D discrete tetrametallic macrocyclic framework. Compound 2 features an infinite 1-D ribbon of rings structure constructed by the subsidiary ligands pebbm connecting tetrametallic macrocyclic building units. For 3, its tetrametallic macrocyclic building units are linked by the subsidiary ligands prbbm to form a 2-D network structure. The structural features of these complexes indicate that the ferrocenedicarboxylate tetrametallic macrocycle can be used as a successful molecular building unit and the shapes and conformational flexibility of subsidiary ligands play a crucial role in the manipulation of the configuration of the resultant MOFs. Their fluorescence spectra in solid state at room temperature suggest that the fluorescence emissions of 1-3 are ruled by 1,1′-ferrocenedicarboxylate ligand.  相似文献   

7.
Condensation of (S)-2-amino-2′-hydroxy-1,1′-binaphthyl with 1 equiv. of pyrrole-2-carboxaldehyde in toluene in the presence of molecular sieves at 70 °C gives (S)-2-(pyrrol-2-ylmethyleneamino)-2′-hydroxy-1,1′-binaphthyl (1H2) in 90% yield. Deprotonation of 1H2 with NaH in THF, followed by reaction with LnCl3 in THF gives, after recrystallization from a toluene or benzene solution, dinuclear complexes (1)3Y2(thf)2 · 3C7H8 (3 · 3C7H8) and (1)3Yb2(thf)2 · 3C6H6 (4 · 3C6H6), respectively, in good yields. Treatment of 1H2 with Ln[N(SiMe3)2]3 in toluene under reflux, followed by recrystallization from a benzene solution gives the dimeric amido complexes {1-LnN(SiMe3)2}2 · 2C6H6 (Ln = Y (5 · 2C6H6), Yb (6 · 2C6H6)) in good yields. All compounds have been characterized by various spectroscopic techniques, elemental analyses and X-ray diffraction analyses. Complexes 5 and 6 are active catalysts for the polymerization of methyl methacrylate (MMA) in toluene, affording syn-rich poly-(MMA)s.  相似文献   

8.
Two pincer-type nickel iminophosphinite complexes, [(2-(CHNR)-6-(OPR′2)C6H3)NiCl] (R = 2,6-iPr2C6H3, R′ = Ph (2a) or iPr (2b)), were synthesized from the reactions of bis(1,5-cyclooctadiene)nickel(0) and corresponding iminophosphinite ligands. The solid state structures of the nickel pincer complexes were determined by X-ray single crystal diffraction studies. They were successfully employed in the Kumada reaction of non-activated aryl chlorides and phenylmagnesium bromide at room temperature.  相似文献   

9.
The synthesis of half-sandwich binuclear transition-metal complexes containing the CabC,C chelate ligands (CabC,C = C2B10H10 (1)) is described. 1Li2 was reacted with chloride-bridged dimers [Cp∗RhCl(μ-Cl)]2 (Cp∗ = η5-C5(CH3)5), [Cp′RhCl(μ-Cl)]2 (Cp′ = η5-1,3-tBu2C5H3), [Cp∗IrCl(μ-Cl)]2 and [(p-cymene)RuCl(μ-Cl)]2 to give half-sandwich binuclear complexes [Cp∗Rh(μ-Cl)]2(CabC,C) (2), [Cp′Rh(μ-Cl)]2(CabC,C) [3),[Cp∗Ir(μ-Cl)]2(CabC,C) (4) and [(p-cymene)Ru(μ-Cl)]2(CabC,C) (5), respectively. Addition reactions of the ruthenium complex 5 with air gave [(p-cymene)2Ru2(μ-OH)(μ-Cl)](CabC,C) (6), rhodium complex 2 with LiSPh gave [Cp∗Rh(μ-SPh)]2(CabC,C) (7). The complexes were characterized by IR, NMR spectroscopy and elemental analysis. In addition, X-ray structure analysis were performed on complexes 2-7 where the potential C,C-chelate ligand was found to coordinate in a bidentate mode as a bridge.  相似文献   

10.
Chiral “P-N-P” ligands, (C20H12O2)PN(R)PY2 [R = CHMe2, Y = C6H5 (1), OC6H5 (2), OC6H4-4-Me (3), OC6H4-4-OMe (4) or OC6H4-4-tBu (5)] bearing the axially chiral 1,1′-binaphthyl-2,2′-dioxy moiety have been synthesised. Palladium allyl chemistry of two of these chiral ligands (1 and 2) has been investigated. The structures of isomeric η3-allyl palladium complexes, (R′ = Me or Ph; Y = C6H5 or OC6H5) have been elucidated by high field two-dimensional NMR spectroscopy. The solid state structure of [Pd(η3-1,3-Ph2-C3H3){κ2-(racemic)-(C20H12O2)PN(CHMe2)PPh2}](PF6) has been determined by X-ray crystallography. Preliminary investigations show that the diphosphazanes, 1 and 2 function as efficient auxiliary ligands for catalytic allylic alkylation but give rise to only moderate levels of enantiomeric excess.  相似文献   

11.
New boron substituted cobalta bis(dicarbollide)(1-) ion (1) derivatives of formula [(8,8′-(RPhP(O)(CH2)nC(O)N) < (1,2-C2B9H10)2-3,3′-Co] (R = Ph or C8H17, n = 1, 3a, 3b; R = Ph, n = 2, 3c), [(8-(Ph2P(O)CH2C(O)NR)(1,2-C2B9H10))(1′,2′-C2B9H11)-3,3′-Co] (R = H, C2H5, CH2C6H5, 5a-c) and [(8-(2RPhP(O)CH2C(O)N(1R)CH2-1,2-C2B9H10))(8′-CH3O-1′,2′-C2B9H10)-3,3′-Co] (1R = Benzyl, 2R = Ph or C8H17, 7a,b) were prepared with the aim to develop a new class of efficient extraction agents for partitioning of polyvalent f-block elements, i.e. lanthanides and actinides from high-level activity nuclear waste. The anionic ligands were characterized by multinuclear NMR spectroscopy and MS, the structures of Cs3a and the calcium complex of 7a were determined by X-ray diffraction analysis. The crystallographic study of the Cs3a proved a formation of linear chains in the structure, where the metal cation is coordinated by oxygen atoms of the CMPO terminal groups. The X-ray structure of the Ca2+ complex of the ionic ligand 7a proved a 1:3 metal to ligand ratio. Presented also is the X-ray structure of the starting ammonium compound 6 used in the synthesis of 7a and 7b. With exception of 5c, these anionic ligands are of high extraction efficiency, the highest being found for 7a in low polar solvent mixture hexyl methyl ketone-dodecane 1:1. These properties qualify some of these derivatives for possible technological applications.  相似文献   

12.
The dimeric starting material [Ru(η6-p-cymene)(μ-Cl)Cl]2 reacts with N3,N3′-bis(diphenylphosphino)-2,2′-bipyridine-3,3′-diamine, 1 and P,P′-diphenylphosphinous acid-P,P′-[2,2′-bipyridine]-3,3′-diyl ester, 2 ligands to afford bridged dinuclear complexes [C10H6N2{NHPPh2-Ru(η6-p-cymene)Cl2}2], 3 and [C10H6N2{OPPh2-Ru(η6-p-cymene)Cl2}2], 4 in quantitative yields. These bis(aminophosphine) and bis(phosphinite) based Ru(II) complexes serve as active catalyst precursors for the transfer hydrogenation of acetophenone derivatives in 2-propanol and especially 4 acts as a good catalyst, giving the corresponding alcohols in 99% yield in 20 min (TOF ? 280 h−1).  相似文献   

13.
The reactions of a series of 5-alkyl-2-thiophenedithiocarboxylates with nickel(II) chloride afforded two types of complexes, blue nickel(II) complexes with two terminal dithiocarboxylate ligands, [Ni(S2CTR)2] and violet nickel(II) complexes with perthio- and dithiocarboxylate ligands, [Ni(S2CTR)(S3CTR)] (where T = 2,5-disubstituted thiophene, R = CnH2n+1, n = 4, 6, 8, 12, 16). The blue monomers are preferred for the shorter chains (C4 and C6) and the violet compounds form exclusively for the longer chains (C8, C12, and C16) in the alkylthiophene complexes. In addition to the above series, [Ni(S2CTCH3)2], was prepared in a one-pot reaction in THF and both the blue and violet products were isolated. It was possible to convert the blue complexes [Ni(S2CTR)2] (R = butyl, hexyl) into the corresponding violet complexes [Ni(S2CTR)(S3CTR)] after stirring in THF solutions for prolonged periods of time. Liquid-crystalline properties of these complexes were examined by DSC and POM. The violet complexes with C8 and C12 alkyl chains showed liquid-crystalline properties.  相似文献   

14.
A new class of (CH2)n-bridged indenyl-pyrazoles [4-{Ind-(CH2)n}-RR′PzH] (Ind = 1H-inden-3-yl, n = 1-3, RR′Pz = 3,5-disubstituted pyrazolato) were synthesized. Reactions of the indenyl-functionalized pyrazoles with nickelocene in refluxing toluene afforded trimetallic and dimetallic cyclopentadienyl nickel(II) complexes, i.e., [CpNi{4-(Ind-(CH2)n)-RR′Pz}2]2Ni and [CpNi{4-(Ind-(CH2)n)-RR′Pz}]2, depending on the steric hindrance from the 3,5-disubstituents on the pyrazolato rings. In the CpNi(II) complexes, pyrazolato ligands exhibit μ-η11 coordination to the metal centers and the indenyl moieties demonstrate no interaction with the metals. All the indenyl-pyrazoles and their complexes were characterized by spectroscopic and analytical methods including X-ray crystallographic study.  相似文献   

15.
The synthesis, structures, electrochemistry, and photophysics of a series of cyclometalated iridium(III) complexes based on benzoxazole derivatives and different β-diketonate ligands are reported. These complexes have a general formula CN2Ir(LL′) [where CN is a monoanionic cyclometalating ligand; 2-phenylbenzoxazolato (pbo), 2-(4-chlorophenyl)benzoxazolato (cpbo), 2-phenyl-5-chlorobenzoxazolato (pcbo), 2-(3,5-difluorophenyl)benzoxazole (fpbo), or 2-(2-naphthyl)benzoxazolato (nbo), and LL′ is an ancillary ligand; acetylacetonate (acac), dibenzoylmethanate (dbm), or 1,1,1,5,5,5-hexafluoroacetylacetonate (hfacac)]. The complexes (pcbo)2Ir(acac) (3), (dfpbo)2Ir(acac) (4), (cpbo)2Ir(dbm) (7), (dfpbo)2Ir(dbm) (8), and (dfpbo)2Ir(hfacac) (9) have been structurally characterized by X-ray crystallography. All of the complexes show reversible oxidation between 0.45 and 1.07 V, versus Fc/Fc+, and have short luminescence lifetime (τ = 0.1-1.3 μs) at room temperature. Except complex 9, the radiative decay rate (kr) and nonradiative decay rate (knr) of the (CN)2Ir(LL′) complexes have been determined by using the lifetime and quantum efficiency. The kr ranges between 2.0 × 103 and 3.0 × 105 s−1 and knr spans a narrower range of values (5.0 × 105 to 7.0 × 106 s−1).  相似文献   

16.
17.
2-Phenylaniline reacted with Pd(OAc)2 in toluene at room temperature for 24 h in a one-to-one molar ratio and with the system PdCl2, NaCl and NaOAc in a 1 (2-phenylaniline):1 (PdCl2):2 (NaCl):1 (NaOAc) molar ratio in methanol at room temperature for one week to give the dinuclear cyclopalladated compounds (μ-X)2[Pd{κ2-N2′,C1-2-(2′-NH2C6H4)C6H4}]2 [1a (X = OAc) and 1b (X = Cl)] in high yield. Moreover, the reaction between 2-phenylaniline and Pd(OAc)2 in one-to-one molar ratio in acid acetic at 60 °C for 4 h, followed by a metathesis reaction with LiBr, allowed isolation of the dinuclear cyclopalladated compound (μ-Br)2[Pd{κ2-N2′,C1-2-(2′-NH2C6H4)C6H4}]2 (1c) in moderate yield. A parallel treatment, but using monodeuterated acetic acid (DOAc) as solvent in the cyclopalladation reaction, allowed isolation of a mixture of compounds 1c, 1cd1 [Pd{κ2-N2′,C1-2-(2′-NH2C6H4)C6H4](μ-Br)2[Pd{κ2-N2′,C1-2-(2′-NH2C6H4)-3-d-C6H3] and 1cd2 (μ-Br)2[Pd{κ2-N2′,C1-2-(2′-NH2C6H4)-3-d-C6H3}]2 in moderate yield and with a deuterium content of ca. 60%. 1a and 1b reacted with pyridine and PPh3 affording the mononuclear cyclopalladated compounds [Pd{κ2-N2′,C1-2-(2′-NH2C6H4)C6H4}(X)(L)] [2a (X = OAc, L = py), 2b (X = Cl, L = py), 3a (X = OAc, L = PPh3) and 3b (X = Cl, L = PPh3)] in a yield from moderate to high. Furthermore, 1a reacted with Na(acac) · H2O to give the mononuclear cyclopalladated compound 4 [Pd{κ2-N2′,C1-2-(2′-NH2C6H4)C6H4}(acac)] in moderate yield. 1H NMR studies in CDCl3 solution of 2a, 2b, 3a, 3b and 4 showed that 2a and 3a presented an intramolecular hydrogen bond between the acetato ligand and the amino group, and were involved in a dynamic equilibrium with water present in the CDCl3 solvent; and that the enantiomeric molecules of 2b and 4 were in a fast exchange at room temperature, while they were in a slow exchange for 2a, 3a and 3b. The X-ray crystal structures of 3b and 4 were determined. 3b crystallized in the triclinic space group with a = 9.9170(10), b = 10.4750(10), c = 12.0890(10) Å, α = 98.610(10)°, β = 94.034(10)° and γ = 99.000(10)° and 4 in the monoclinic space group P21/a with a = 11.5900(10), b = 11.2730(10), c = 12.2150(10) Å, α = 90°, β = 107.6560(10)° and γ = 90°.  相似文献   

18.
The complex [(η6-C6Me6)Ru(μ-Cl)Cl]21 react with sodium salts of β-diketonato ligands in methanol to afford the oxygen bonded neutral complexes of the type [(η6-C6Me6)Ru(κ2-O,O′-R1COCHCOR2)Cl] {R1, R2 = CH3 (2), CH3, C6H5 (3), C6H5 (4), OCH3 (5), OC2H5 (6)}. Complex 4 with AgBF4 yields the γ-carbon bonded ruthenium dimeric complex 7. Complex 4 also reacts with tertiary phosphines and bridging ligands to yield complexes of the type [(η6-C6Me6)Ru(κ2-O,O′-C6H5COCHCOC6H5)(L)]+ (L = PPh3 (8), PMe2Ph (9)) and [{η6-C6Me6)Ru(κ2-O,O′-C6H5COCHCOC6H5)}2(μ-L)] L = 4,4′-bipyridine (4,4′-bipy) (11), 1,4-dicyanobenzene (DCB) (12) and pyrazine (Pz) (13). Complexes 2-4 react with sodium azide to yield neutral complexes [(η6-C6Me6)Ru(κ2-O,O′-R1COCHCOR2)N3] {R1, R2 = CH3 (10a), CH3, C6H5 (10b), C6H5 (10c). All these complexes were characterized by FT-IR and FT-NMR spectroscopy as well as analytical data. The molecular structures of complexes [(η6-C6Me6)Ru(κ2-O,O′CH3COCH-COC6H5)Cl] (3) and [(η6-C6Me6)Ru(κ2-O,O′-C6H5COCHCOC6H5] (4) were established by single crystal X-ray diffraction studies. The complex 3 crystallizes in the triclinic space group, [a = 7.9517(4), b = 9.0582(4) and c = 14.2373(8) Å, α = 88.442(3)°, β = 76.6.8(3)° and γ = 81.715(3)°. V = 987.17(9) Å3, Z = 2]. Complex 4 crystallizes in the monoclinic space group, P21/c [a = 7.5894(8), b = 20.708(2) and c = 29.208(3) Å,β = 92.059(3)° V = 4587.5(9) Å3, Z = 8].  相似文献   

19.
The direct cyclopalladation of 3-methoxyimino-2-(4-chlorophenyl)-3H-indole (1a) and 3-methoxyimino-2-phenyl-3H-indole (1b) results in the regioselective activation of the ortho σ[C(sp2, phenyl)-H] bond affording (μ-OAc)2[Pd{κ2-C,N-C6H3-4R-1-(C8H4N-3′-NOMe)}]2 (2) {R = Cl (2a) or H (2b)} that contain a central “Pd(μ-OAc)2Pd” core. Compounds 2a and 2b reacted with triphenylphosphine (in a molar ratio PPh3:2 = 2) giving [Pd{κ2-C,N-C6H3-4R-1-(C8H4N-3′-NOMe)}(OAc)(PPh3)] (3) {R = Cl (3a) or H (3b)}. Treatment of 2a or 2b with a slight excess of LiCl in acetone produced the metathesis of the bridging ligands and the formation of (μ-Cl)2[Pd{κ2-C,N-C6H3-4R-1-(C8H4N-3′-NOMe)}]2 (4) {R = Cl (4a) or H (4b)} with a central “Pd(μ-Cl)2Pd” moiety. The reactions of 4a or 4b with deuterated pyridine (py-d5) or triphenylphosphine gave the monomeric derivatives [Pd{κ2-C,N-C6H3-4R-1-(C8H4N-3′-NOMe)}Cl(L)] with R = Cl or H and L = py-d5 (5) or PPh3 (6). The crystal structure of 6b·1/2CH2Cl2 confirmed the mode of binding of the ligand, the nature of the metallated carbon atom and a trans-arrangement of the phosphine ligand and the heterocyclic nitrogen. Theoretical calculations on the free ligands are also reported and have allowed the rationalization of the regioselectivity of the cyclopalladation process.  相似文献   

20.
Reaction of 2,2′-bipyridine-6-carboxaldehyde with the appropriate aliphatic diamine in MeOH and subsequent reduction with NaBH4 gives the new, potentially hexadentate, ligands N,N′-bis(2,2′-bipyridin-6-ylmethyl)ethane-1,2-diamine (bmet), N,N′-bis(2,2′-bipyridin-6-ylmethyl)propane-1,3-diamine (bmpp) and N,N′-bis(2,2′-bipyridin-6-ylmethyl)hexane-1,6-diamine (bmhx). The syntheses and characterisation of these ligands are reported; the ligands are isolated as the hydrochloride salts, with purification effected by either recrystallisation or cation exchange chromatography. [Co(bmet)](ClO4)3 · H2O is obtained on reaction of bmet · 4.25HCl · 2.5H2O with Na3[Co(O2CO)3] · 3H2O, and X-ray structural analysis shows this to have a pair of very short Co–N bonds. The synthesis and characterisation of the first coordination complex containing 6-(aminomethyl)-2,2′-bipyridine (amb) is also described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号