首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
First examples of tungsten aminocarbene complexes [(OC5)W{C(SiR1nR23-n)NH2}] 2a-d (R1 = Ph, R2 = Me) were synthesized via ammonolysis of the corresponding methoxycarbene complexes 1a-d. They were characterized by NMR spectroscopy, MS, IR, UV/Vis and elemental analysis, and in the case of the C-triphenylsilyl derivative 2a by single-crystal X-ray structure analysis. The reaction of P-chloro alkylidenephosphane 3 with complexes 2a-d, meant to give 2H-azaphosphirene complexes, was monitored by 31P NMR spectroscopy to reveal the formation of the products 4-7, which were presumably formed via decomposition of the transient complexes 10a-d.  相似文献   

2.
Eight new organotin (IV) carboxylates, (R3Sn)4(nap)4 (R = Me 1, n-Bu 2), [(R3Sn) (nap)]n (R = Ph 3, PhCH24), (R2Sn) (nap)2 (R = n-Bu 5, Ph 6, PhCH27) and {[R2Sn(nap)]2O}2 (R = Me 8) (nap = (S)-(+)-6-methoxy-α-methyl-2-naphthaleneaceto anion) have been synthesized. All of the complexes have been characterized by elemental analysis, FT-IR, NMR (1H, 13C and 119Sn) spectra. Among these complexes, complexes 1, 3, 5 and 8 were also characterized by X-ray crystallography diffraction analysis, and the data of X-ray crystallography diffraction indicated that complexes 1, 3 and 5 are new chiral organotin (IV) carboxylates complexes. The structural analyses show that complex 1 has a tetranuclear Sn4O8 macrocycle structure, complex 3 has a 1D spring-like chiral helical chain with a columnar channel, complex 5 possesses a dimer structure, and complex 8 has a supramolecular chainlike ladder structure through weak intermolecular non-covalent OO interactions.  相似文献   

3.
The synthesis of 1,3-diarylimidazolidin-2-ylidene (NHC) precursor, 1,3-bis(2,4,6-trimethylphenyl)imidazolinium chloride, (3b) has been extended to the electronically and sterically modified NHC precursors 3a (X = H), 3c (X = Br) and 3e (X = Cl) in order to investigate the electronic effect of a p-substituent (X) on cross-coupling catalysts. Complexes of the type PdCl2(NHC)2 (5), PdCl2(NHC)(PPh3) (6) and [RhCl(NHC)(cod)] (7) were prepared from 3 or 4d (1,3-bis(2,4-dimethylphenyl)-2-trichloromethylimidazolidin). Initial decomposition temperatures of the complexes 5 and 6 were determined by TGA. In situ formed complexes from Pd(OAc)2 and 3 as well as the preformed complexes 5 and 6 have been tested as catalysts in coupling of phenylboronic acid with 4-haloacetophenones. The electron donating ability of NHCs derived from 3 was assessed by measuring C-O frequencies in the respective [RhCl(NHC)(CO)2] complex 8 which was prepared by replacement of cod ligand of 7 with CO. An interesting correlation between the electron-donating nature of the aryl substituent and catalytic activity and also initial decomposition temperature of the complexes 5 and 6 was observed.  相似文献   

4.
The anisyl boronic acids, 2-OMe-3-R2-5-R1-C6H2B(OH)2 (R1=R2=H (a); R1=H, R2=Ph (b); R1=Me, R2=H (c); R1=Cl, R2=H (d); R1=t-Bu, R2=H (e)), have been employed in Suzuki cross-coupling reactions with either 2-bromo-6-formylpyridine (I) or 2-bromo-6-acetylpyridine (II) generating, following a facile deprotection step, the 2-phenoxy-6-carbonylpyridines, 2-(2′-OH-3′-R2-5′-R1-C6H2)-6-(CHO)C5H3N (R1=R2=H (1a); R1=Me, R2=H (1c); R1=Cl, R2=H (1d); R1=t-Bu, R2=H (1e)) and 2-(2′-OH-3′-R2-5′-R1-C6H2)-6-(CMeO)C5H3N (R1=R2=H (2a); R1=H, R2=Ph (2b)). Condensation reactions of 1 and 2 with 2,6-diisopropylaniline proceed smoothly to give the 2-phenoxy-6-iminopyridines, 2-(2′-OH-3′-R2-5′-R1-C6H2)-6-{CHN(2,6-i-Pr2C6H3)}C5H3N (R1=R2=H (3a); R1=Me, R2=H (3c); R1=Cl, R2=H (3d); R1=t-Bu, R2=H (3e)) and 2-(2′-OH-3′-R2-5′-R2-C6H2)-6-{CMeN(2,6-i-Pr2C6H3)}C5H3N (R1=H, R2=Ph (4a), R1=H, R2=Ph (4b)). Reduction of the imino unit (and concomitant C-C bond formation) in 3 can be achieved by treatment with trimethylaluminium or methyllithium which, following hydrolysis, furnishes the racemic chiral 2-phenoxy-6-(methanamino)pyridines, 2-(2′-OH-3′-R2-5′-R1-C6H2)-6-{CHMe-NH(2,6-i-Pr2C6H3)}C5H3N (R1=R2=H (5a); R1=Me, R2=H (5c); R1=Cl, R2=H (5d); R1=t-Bu, R2=H (5e)). This work represents a straightforward and rapid synthetic route to libraries of sterically and electronically variable phenoxy-substituted imino- and methanamino-pyridines, which are expected to act as useful ligands or proligands for late and early transition metal-mediated alkene polymerisation catalysis.  相似文献   

5.
N-Heterocyclic carbene ligands (NHC) were metalated with Pd(OAc)2 or [Ni(CH3CN)6](BF4)2 by in situ deprotonation of imidazolium salts to give the N-olefin functionalized biscarbene complexes [MX2(NHC)2] 3-7 (3: M = Pd, X = Br, NHC = 1,3-di(3-butenyl)imidazolin-2-ylidene; 4: M = Pd, X = Br, NHC = 1,3-di(4-pentenyl)imidazolin-2-ylidene; 5: M = Pd, X = I, NHC = 1,3-diallylimidazolin-2-ylidene; 6: M = Ni, X = I, NHC = 1,3-diallylimidazolin-2-ylidene; 7: M = Ni, X = I, NHC = 1-methyl-3-allylimidazolin-2-ylidene). Molecular structure determinations for 4-7 revealed that square-planar complexes with cis (5) or trans (4, 6, 7) coordination geometry at the metal center had been obtained. Reaction of nickelocene with imidazolium bromides afforded the η5-cyclopentadienyl (η5-Cp) monocarbene nickel complexes [NiBr(η5-Cp)(NHC)] 8 and 9 (8: NHC = 1-methyl-3-allylimidazolin-2-ylidene; 9: NHC = 1,3-diallylimidazolin-2-ylidene). The bromine abstraction in complexes 8 and 9 with silver tetrafluoroborate gave complexes [NiBr(η5-Cp)(η3-NHC)] 10 and 11. The X-ray structure analysis of 10 and 11 showed a trigonal-pyramidal coordination geometry at the nickel(II) center and coordination of one N-allyl substituent.  相似文献   

6.
Epoxidations of trans-β-methylstyrene, trans-stilbene and trans-methyl p-methoxycinnamate using chiral dioxiranes derived from both enantiopure diastereomers of α-fluoro cyclohexanones, (2S, 5R)-3a-6a and (2R, 5R)-3e-6e are studied and compared. From ab initio calculations at the HF/6-31G level of conformational inter-conversion for (2S, 5R)-D5a and (2R, 5R)-D5e dioxiranes it was found that, due to the α-fluorine atom, conformer K1 is more stable in the case of (2S, 5R)-D5a while conformer K2 is more stable in the case of (2R, 5R)-D5e. However, in both cases, the more stable conformers, K1 and K2, undergo rapid inter-conversion. Therefore, based on slow epoxidation reactions and rapid ring inversion of six-membered ring dioxiranes the Curtin-Hammett principle holds. Conformation K2 with axial fluorine having been found to be more reactive, the inversion of configuration observed for the epoxides obtained with ketones 3e-6e (compared with ketones 3a-6a) could be rationalized from competitive reactions of K2 and K1 conformations leading to simultaneous production of both (−) and (+) epoxides in the case of ketones 3e-6e.  相似文献   

7.
The one pot reactions carried among ortho-aminophenol, R2SnO (R = Me or Ph) and acetyl acetone, 2-hydroxyacetophenone and 2-hydroxy-3-methylacetophenone led to six new diorganotin(IV) compounds Me2SnL1 (1), Ph2SnL1 (2), Me2SnL2 (3) Ph2SnL2 (4), Me2SnL3 (5) and Ph2SnL3 (6) (H2L1 = 2-(3-hydroxy-1-methyl-but-2-enylideneamino)-phenol, H2L2 and H2L3 = 2-[1-(2-hydroxyaryl)alkylideneamino]-phenol) in good yields. Combination of IR, 1H, 13C and 119Sn NMR and X-ray diffraction techniques along with elemental analyses evidenced the formation of penta-coordinated monomeric species. The crystal structures of ligand H2L1 and complexes 1, 3 and 4 were determined by single crystal X-ray diffraction study. In the solid state, the ligand H2L1 exists as keto-enamine tautomeric form. There are N-H…O intra-molecular hydrogen bonds between amine and carbonyl groups. Diorganotin(IV) complexes 1, 3 and 4 are monomers with TBP (trigonal bipyramidal) geometry surrounding the tin atom. The O, N, O- tridentate ligand places its two oxygen donating atoms in the axial positions, and the nitrogen atom occupies one equatorial position. The two R groups attached to tin occupy the other two equatorial positions. The solution structures were predicted by 119Sn NMR spectroscopy.  相似文献   

8.
Novel substituted 2-[(2-hydroxyethyl)]aminophenols, MeN(CHR1CR2R3OH)(C6H4-o-OH) (2-5), were synthesized by the reaction of 2-methylaminophenol with corresponding oxiranes. Titano-spiro-bis(ocanes) [MeN(CHR1CR2R3O)(C6H4-o-O)]2Ti 6-9 (2, 6, R1 = H, R2 = R3 = Me; 3, 7, R1 = R2 = Ph (treo-), R3 = H; 4, 8, R1 = Ph, R2 = R3 = H; 5, 9, R1 = R2 = H, R3 = Ph) based on [ONO]-ligands have been synthesized. The obtained compounds were characterized by 1H and 13C NMR spectroscopy and elemental analysis data. The complex [Ti(μ2-O){O-o-C6H4}{μ2-CMe2CH2}NMe]6 (10) was obtained by controlled hydrolysis of 6. Molecular structure of 10 was determined by X-ray structure analysis.  相似文献   

9.
Addition of excesses of N-heterocyclic carbenes (NHCs) IEt2Me2, IiPr2Me2 or ICy (IEt2Me2 = 1,3-diethyl-4,5-dimethylimidazol-2-ylidene; IiPr2Me2 = 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene; ICy = 1,3-dicyclohexylimidazol-2-ylidene) to [HRh(PPh3)4] (1) affords an isomeric mixture of [HRh(NHC)(PPh3)2] (NHC = IEt2Me2 (cis-/trans-2), IiPr2Me2 (cis-/trans-3), ICy (cis-/trans-4) and [HRh(NHC)2(PPh3)] (IEt2Me2(cis-/trans-5), IiPr2Me2 (cis-/trans-6), ICy (cis-/trans-7)). Thermolysis of 1 with the aryl substituted NHC, 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene (IMesH2), affords the bridging hydrido phosphido dimer, [{(PPh3)2Rh}2(μ-H)(μ-PPh2)] (8), which is also the reaction product formed in the absence of carbene. When the rhodium precursor was changed from 1 to [HRh(CO)(PPh3)3] (9) and treated with either IMes (=1,3-dimesitylimidazol-2-ylidene) or ICy, the bis-NHC complexes trans-[HRh(CO)(IMes)2] (10) and trans-[HRh(CO)(ICy)2] (11) were formed. In contrast, the reaction of 9 with IiPr2Me2 gave [HRh(CO)(IiPr2Me2)2] (cis-/trans-12) and the unusual unsymmetrical dimer, [(PPh3)2Rh(μ-CO)2Rh(IiPr2Me2)2] (13). The complexes trans-3, 8, 10 and 13 have been structurally characterised.  相似文献   

10.
Palladium complexes composed of [Pd(Ln)2Cl2] (n = 1, 2, 3, 4, 6), [L5a]2[PdCl4] and [Pd(L5b)2], where L1 = 4,5-dihydro-2-phenyl-1H-imidazole (=2-phenyl-1H-imidazoline), L2 = 2-(o-fluorophenyl)-1H-imidazoline, L3 = 2-(o-methylphenyl)-1H-imidazoline, L4 = 2-(o-tert-butylphenyl)-1H-imidazoline, L5a = 2-(o-hydroxyphenyl)-1H-imidazolinium, L5b = 2-(1H-imidazolin-2-yl)phenolate, and L6 = 2-(o-methylphenyl)-1H-imidazole, were synthesized. Molecular structures of the isolated palladium complexes were characterized by single crystal X-ray diffraction analysis. The effect of ortho-substituents on the phenyl ring on trans-chlorine geometry was noted for complexes [Pd(L1)2Cl2] 1a and 1b, [Pd(L2)2Cl2] 2 and [Pd(L6)2Cl2] 6, whereas cis-chlorine geometry was observed for [Pd(L3)2Cl2] 3 and [Pd(L4)2Cl2] 4. PdCl2 reacts with 2-(o-hydroxyphenyl)-1H-imidazoline in DMF to give [L5a]+ and [L5b]- so that [L5a]2[PdCl4] 5a and [Pd(L5b)2] 5b were obtained. In complex 5b, as an N,O-bidentate ligand, two ligands L5b coordinated with the central Pd(II) ion in the trans-form. The coordination of PdCl2 with 2-(o-hydroxyphenyl)-1H-imidazolines in solution was investigated by NMR spectroscopy.  相似文献   

11.
Six new chiral triorganotin(IV) complexes, {(R3Sn)2[C3H6(COO)2]}n (R = Me: 1; Bu: 2), {(R3Sn)2[C4H8(COO)2]}n (R = Me: 3; Bu: 4), and {(R3Sn)2[C2H4O(COO)2]}n (R = Me: 5; Bu: 6) have been prepared by treatment of (R)-(+)-methylsuccinic acid, (S)-(+)-methylglutaric acid and l-(−)-malic acid, with the corresponding R3SnCl (R = Me, Bu) and sodium ethoxide in methanol. All the complexes were characterized by elemental analysis, FT-IR, NMR (1H, 13C, 119Sn) spectroscopy and TGA. Except for 3, all of the complexes were also characterized by X-ray crystallography. The structural analyses reveal that complexes 1 and 5 have 2D network structures in which (R)-(+)-methylsuccinic acid and l-(−)-malic acid act as tetradentate ligands coordinated to trimethyltin(IV) ions. Complexes 2 and 4 have 3D metal-organic framework structures in which the deprotoned acids serve as tetradentate ligands. Complex 6 adopts a 1D zigzag chain structure and forms a 2D supramolecular framework through intermolecular C-H?O interactions. In addition, the antitumor activities of complexes 1-6 have been studied. We also have measured the specific rotation of the chiral dicarboxylic acids and the organotin derivatives.  相似文献   

12.
The phosphorus ylides Ph3PCHC(O)C6H4R (R = 4-Me 1a, 4-Br 1b) react with PdCl2 in equimolar ratios to give the C,C-orthopalladated [Pd{CHP(C6H4)Ph2CO-C6H4-R)}(μ-Cl)]2 (R = 4-Me 2a, 4-Br 2b) which react with NaClO4/dppe, NaClO4/dppm, py and PPh3 to give the mononuclear derivatives [Pd{CH{P(C6H4)Ph2}COC6H4-R}(dppe-P,P′)[(ClO4) (R = 4-Me 3a, 4-Br 3b), [Pd{CH{P(C6H4)Ph2}COC6H4-R}(dppm-P,P′)[(ClO4 ( (R = 4-Me 4a, 4-Br 4b), [Pd{CH{P(C6H4)Ph2}COC6H4-R}Cl(L)] (L = py, R = 4-Me 5a, 4-Br 5b, L = PPh3, R = 4-Me 6a, 4-Br 6b). The C, C-metalated chelate are demonstrated by an X-ray diffraction study of 3a and 4a. Characterization of the obtained compounds was also performed by elemental analysis, IR, 1H, 31P, and 13C NMR.  相似文献   

13.
Bis(dichlorosilyl)methanes 1 undergo the two kind reactions of a double hydrosilylation and a dehydrogenative double silylation with alkynes 2 such as acetylene and activated phenyl-substituted acetylenes in the presence of Speier’s catalyst to give 1,1,3,3-tetrachloro-1,3-disilacyclopentanes 3 and 1,1,3,3-tetrachloro-1,3-disilacyclopent-4-enes 4 as cyclic products, respectively, depending upon the molecular structures of both bis(dichlorosilyl)methanes (1) and alkynes (2). Simple bis(dichlorosilyl)methane (1a) reacted with alkynes [R1-CC-R2: R1 = H, R2 = H (2a), Ph (2b); R1 = R2 = Ph (2c)] at 80 °C to afford 1,1,3,3-tetrachloro-1,3-disilacyclopentanes 3 as the double hydrosilylation products in fair to good yields (33-84%). Among these reactions, the reaction with 2c gave a trans-4,5-diphenyl-1,1,3,3-tetrachloro-1,3-disilacyclopentane 3ac in the highest yield (84%). When a variety of bis(dichlorosilyl)(silyl)methanes [(MenCl3 − nSi)CH(SiHCl2)2: n = 0 (1b), 1 (1c), 2 (1d), 3 (1e)] were applied in the reaction with alkyne (2c) under the same reaction conditions. The double hydrosilylation products, 2-silyl-1,1,3,3-tetrachloro-1,3-disilacyclopentanes (3), were obtained in fair to excellent yields (38-98%). The yields of compound 3 deceased as follows: n = 1 > 2 > 3 > 0. The reaction of alkynes (2a-c) with 1c under the same conditions gave one of two type products of 1,1,3,3-tetrachloro-1,3-disilacyclopentanes 3 and 1,1,3,3-tetrachloro-1,3-disilacyclopent-4-enes (4): simple alkyne 2a and terminal 2b gave the latter products 4ca and 4cb in 91% and 57% yields, respectively, while internal alkyne 2c afforded the former cyclic products 3cc with trans form between two phenyl groups at the 3- and 4-carbon atoms in 98% yield, respectively. Among platinum compounds such as Speier’s catalyst, PtCl2(PEt3)2, Pt(PPh3)2(C2H4), Pt(PPh3)4, Pt[ViMeSiO]4, and Pt/C, Speier’s catalyst was the best catalyst for such silylation reactions.  相似文献   

14.
Optically active ligands of type Ph2PNHR (R = (R)-CHCH3Ph, (a); (R)-CHCH3Cy, (b); (R)-CHCH3Naph, (c)) and PhP(NHR)2 (R = (R)-CHCH3Ph, (d); (R)-CHCH3Cy, (e)) with a stereogenic carbon atom in the R substituent were synthesized. Reaction with [PdCl2(COD)2] produced [PdCl2P2] (1) (P = PhP(NHCHCH3Ph)2), whose molecular structure determined by X-ray diffraction showed cis disposition for the ligands. All nitrogen atoms of amino groups adopted S configuration. The new ligands reacted with allylic dimeric palladium compound [Pd(η3-2-methylallyl)Cl]2 to gave neutral aminophosphine complexes [Pd(η3-2-methylallyl)ClP] (2a-2e) or cationic aminophosphine complexes [Pd(η3-2-methylallyl)P2]BF4 (3a-3e) in the presence of the stoichiometric amount of AgBF4. Cationic complexes [Pd(η43-2-methylallyl)(NCCH3)P]BF4 (4a-4e) were prepared in solution to be used as precursors in the catalytic hydrovinylation of styrene. 31P NMR spectroscopy showed the existence of an equilibrium between the expected cationic mixed complexes 4, the symmetrical cationic complexes [Pd(η3-2-methylallyl)P2]BF4 (3) and [Pd(η3-2-methylallyl)(NCCH3)2]BF4 (5) coming from the symmetrization reaction. The extension of the process was studied with the aminophosphines (a-e) as well as with nonchiral monodentate phosphines (PCy3 (f), PBn3 (g), PPh3 (h), PMe2Ph (i)) showing a good match between the extension of the symmetrization and the size of the phosphine ligand. We studied the influence of such equilibria in the hydrovinylation of styrene because the behaviour of catalytic precursors can be modified substantially when prepared ‘in situ’. While compounds 3 and bisacetonitrile complex 5 were not active as catalysts, the [Pd(η3-2-methylallyl)(η2-styrene)2]+ species formed in the absence of acetonitrile showed some activity in the formation of codimers and dimers. Hydrovinylation reaction between styrene and ethylene was tested using catalytic precursors solutions of [Pd(η3-2-methylallyl)LP]BF4 ionic species (L = CH3CN or styrene) showing moderate activity and good selectivity. Better activities but lower selectivities were found when L = styrene. Only in the case of the precursor containing Ph2PNHCHCH3Ph (a) ligand was some enantiodiscrimination (10%) found.  相似文献   

15.
The synthesis and full characterization of a number of amino acid and dipeptide derivatives with sulfur-containing side chains derived from ferrocene carboxylic acid and ferrocene-1,1′-dicarboxylic acid is presented. In particular, compounds Fc-CO-(Aaa)n-OMe (4) and Fe[C5H4-CO-(Aaa)n-OMe]2 (3) with (Aaa)n = Cys(Bzl) (a), Cys(Bzl)-Cys(Bzl) (b), Cys(p-OMe-Bzl) (c), Cys(p-OMe-Bzl)-Cys(p-OMe-Bzl) (d), Met (e), and Met-Met (f) were prepared. Also, the free acid derivatives Fe[C5H4-CO-Met-OH]2 (6e) and Fc-CO-Met-OH (7e) were prepared and characterized. The solid state structures of 3a, 4b, and 4e were determined by single crystal X-ray diffraction. Compound 3a shows a 1,3′ substitution pattern on the Cp rings in the solid state. Structures in solution were determined by NMR, IR and CD spectroscopy, with particular emphasis on the question of hydrogen bonding and helical chirality of the metallocene. As an example, the full assignment for the Cp signals in the disubstituted derivative 3a was achieved by simulation of the 1H NMR signals from the cyclopentadienyl ring in combination with 2D-NOESY spectra. In solution, 3a has the known 1,2′ substitution pattern, which is stabilized by intramolecular hydrogen bonds.  相似文献   

16.
Mononuclear mercury complexes (1, 2, and 3) bearing bis-N-heterocyclic carbene (NHC) ligands of the form [(NHC)2-μ-Hg]+2 have been prepared and structurally characterised. The complexes were derived from three bis-imidazolium salts as precursors to NHC; either 1,3-bis(N-methylimidazolium-1-ylmethyl)benzene bis(hexafluorophosphate) (I·2PF6), 1,3-bis(N-butylimidazolium-1-ylmethyl)benzene bis(hexafluorophosphate) (II·2PF6) or 3,5-bis(N-butylimidazolium-1-ylmethyl)toluene bis(hexafluorophosphate) (III·2PF6) treated with mercury(II) acetate. Interestingly X-ray crystal structure analysis revealed a close interaction between the Hg metal centre with one carbon atom of the aryl linker in addition to coordination with two NHCs.  相似文献   

17.
The metal β-diketiminato ligand-to-metal binding modes are briefly reviewed, with reference particularly to our previous work on metal complexes using the ligands [{N(R1)C(R2)}2CH] (R1 = SiMe3 = R and R2 = Ph; or R1 = C6H3Pri2-2,6 and R2 = Me). The syntheses of the β-diketimines H[{N(R)C(Ar)}2CH] 1 (Ar = Ph) and 2 (Ar = C6H4Me-4) and the ansa-CH2-bridged bis(β-diketimine)s 3 (Ar = Ph) and 4 (Ar = C6H4Me-4) are reported. Thus, from the appropriate compound Li[{N(R)C(Ar)}2CH] and H2O, (CH2Br)2 or CH2Br2 the product was 2, 3 or 4. Compound 1 was prepared from K[{N(R)C(Ph)}2CH] and (CH2Br)2. Each of 3 or 4 with LiBun surprisingly yielded the bicyclic dilithium compound 5 (Ar = Ph) or 6 (Ar = C6H4Me-4) in which each of the β-diketiminato fragments is an N,N′-bridge between the two lithium atoms and the CH2 moiety joins the two ligands through their central carbon atoms. However, 4 with AlMe3 yielded the expected ansa-CH2-bridged-bis[(β-diketiminato)(dimethyl)alane] 7, which was also obtained from 6 and Al(Cl)Me2. X-ray structures of the known compounds 2 and 3, and of 5, 6 and 7 are presented; the 1H NMR spectra of 6 in toluene-d8 show that there is restricted rotation about the NC-C6H4Me-4 bond.  相似文献   

18.
Ruthenium piano-stool complexes incorporating the new bidentate aminoalkylphosphine ligand 1,2-bis(dipyrrolidin-1-ylphosphino)ethane (dpyrpe, I) or its monodentate counterpart bis(pyrrolidin-1-yl)methylphosphine (pyr2PMe, II) have been prepared, [(C5R5)RuCl(PP)] (R = Me and PP = dpyrpe, 1; R = Me and PP = (pyr2PMe)2, 2; R = H and PP = dpyrpe, 3). Complexes 2 and 3 have been characterized by X-ray crystallography. Complexes 1 and 2 react with NaBAr4f in the presence of ligand L to yield [CpRu(L)(dpyrpe-κ2P)][BArf4] (L = MeCN, 4a; CO, 4b; N2, 4c) and [CpRu(L)(pyr2PMe)2][BAr4f] (L = MeCN, 5a; CO, 5b; N2, 5c). Complex 4a was crystallographically characterized. The CO complexes 4b and 5b were examined using IR spectroscopy in an attempt to establish the electron-donating capabilities of I and II. Complex 1 oxidatively adds H2 in the presence of NaBAr4f to yield the Ru(IV) dihydride [CpRuH2(dpyrpe-κ2P)][BAr4f], 7.  相似文献   

19.
Reactions of ω-diphenylphosphinofunctionalized alkyl phenyl sulfides Ph2P(CH2)nSPh (n = 1, 1a; 2, 2a; 3, 3a), sulfoxides Ph2P(CH2)nS(O)Ph (n = 1, 1b; 2, 2b; 3, 3b) and sulfones Ph2P(CH2)nS(O)2Ph (n = 1, 1c; 2, 2c; 3, 3c) with dinuclear chlorido bridged rhodium(I) complexes [(RhL2)2(μ-Cl)2] (L2 = cycloocta-1.5-diene, cod, 4; bis(diphenylphosphino)ethane, dppe, 5) afforded mononuclear Rh(I) complexes of the type [RhCl{Ph2P(CH2)nS(O)xPh-κP}(cod)]1 (n/x = 1/0, 6a; 1/1, 6b; 1/2, 6c; 2/0, 8a; 2/1, 8b; 2/2, 8c; 3/0, 10a; 3/1, 10b; 3/2, 10c) and [RhCl{Ph2P(CH2)nS(O)xPh-κP}(dppe)] (n/x = 1/0, 7a; 1/1, 7b; 1/2, 7c; 2/0, 9a; 2/1, 9b; 2/2, 9c; 3/0, 11a; 3/1, 11b; 3/2, 11c) having the P^S(O)x ligands κP coordinated. Addition of Ag[BF4] to complexes 6-11 in CH2Cl2 led with precipitation of AgCl to cationic rhodium complexes of the type [Rh{Ph2P(CH2)nS(O)xPh-κPS/O}L2][BF4] having bound the P^S(O)x ligands bidentately in a κPS (13a-18a, 15b-18b) or a κPO (13b, 14b, 13c-18c) coordination mode. Unexpectedly, the addition of Ag[BF4] to 6a in THF afforded the trinuclear cationic rhodium(I) complex [Rh3(μ-Cl)(μ-Ph2PCH2SPh-κPS)4][BF4]2·4THF (12·4THF) with a four-membered Rh3Cl ring as basic framework. Addition of sodium bis(trimethylsilyl)amide to complexes 6-11 led to a selective deprotonation of the carbon atom neighbored to the S(O)x group (α-C) yielding three different types of organorhodium complexes: a) Organorhodium intramolecular coordination compounds of the type [Rh{CH{S(O)xPh}CH2CH2PPh2CP}L2] (22a-c, 23a-c), b) zwitterionic complexes [Rh{Ph2PCHS(O)xPh-κPS/O}L2] having κPS (21a, 21b) and κPO (20b/c, 21c) coordinated anionic [Ph2PCHS(O)xPh] ligands, and c) the dinuclear rhodium(I) complex [{Rh{μ-CH(SPh)PPh2CP}(cod)}2] (19). All complexes were fully characterized spectroscopically and complexes 15b, 15c, 12·4THF and 19·THF additionally by X-ray diffraction analysis. DFT calculations of zwitterionic complexes gave insight into the coordination mode of the [Ph2PCHS(O)Ph] ligand (κPS versus κPO).  相似文献   

20.
The reduction of trans-[Pd(NHC)2Cl2] (NHC = IMes, 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene; IiPr2 = 1,3-bis-isopropylimidazol-2-ylidene) with potassium graphite under an atmosphere of CO affords the palladium NHC carbonyl clusters [Pd3(μ-CO)3(NHC)3] (NHC = IMes, 1; IiPr2, 3). Treatment of 1 with SO2 at room temperature yields the bridging SO2 complex [Pd3(μ-SO2)3(IMes)3] (4) in quantitative yield. Complexes 1, 3 and 4 have been structurally characterised by X-ray crystallography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号