首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reaction of diarylacetylenes with CoCl(PPh3)3 and sodium cyclopentadienylide or sodium carbomethoxycyclopentadienylide gave (η4-tetra-arylcyclobutadiene)(η5-cyclopentadienyl)cobalt and (η4-tetra-arylcyclobutadiene)(η5-carbomethoxycyclopentadienyl)cobalt, respectively, where aryl = para-XC6H4 (X = CF3, F, MeO). The reaction was unsuccessful for the synthesis of (η4-tetra(para-methoxyphenyl)cyclobutadiene)(η5-cyclopentadienyl)cobalt, which was synthesised instead from dicarbonyl(η5-cyclopentadienyl)cobalt. In all of the examples starting with CoCl(PPh3)3 an intermediate (η5-cyclopentadienyl)- or (η5-carbomethoxycyclopentadienyl)(triphenylphosphine)-2,3,4,5-tetraarylcobaltacyclopentadiene complex was isolated, and two examples were characterised by X-ray crystallography. Heating the (η5-cyclopentadienyl)- or (η5-carbomethoxycyclopentadienyl)(triphenylphosphine)-2,3,4,5-tetraarylcobaltacyclopentadiene complexes resulted in clean conversion to the corresponding metallocenes. The influence of the para-aryl substituents on the 1H NMR of the cyclopentadienyl moiety is tabulated, together with the influence of a range of R substituents in (η4-tetraphenylcyclobutadiene)(η5-RC5H4)cobalt (R = CO2Me, CH2OH, Me, CHO, CCH, CO2H, CN, CONHR1, 2-oxazolinyl, NH2, NHAc, HgCl, Br, I, SiMe3, SnMe3, Ph).  相似文献   

2.
Ferrocenyl substituted ruthenium metallacyclic compounds, [Ru2(CO)6{μ-η1122-1,4-Fc2C5H2O}] (1) and [Ru2(CO)6{μ-η1122-1,5-Fc2C5H2O}] (2) have been synthesized and structurally characterized. Electrochemical studies for 1 and 2 and the respective quinone derivatives 3 and 4 show weak to no electrochemical coupling at the mixed-valent intermediate state which is dependent on the complex frameworks.  相似文献   

3.
An X-ray study of [(μ-η23-HCCCH2)Cp2Mo2(CO)4]+(BF4) (1) and [(μ-η23-HCCCMe2)Cp2Mo2(CO)4]+(BF4) (2) reveals their structures to be similar to the structure of neutral compounds of the series (μ-η22-RCCR)Cp2Mo2(CO)4, the difference between 1 and 2 being mainly due to the markedly different MoC+ bond lengths, which accounts for different stability and fluxional behavior of these compounds in solution.  相似文献   

4.
Reaction of W(η2-PhCCPh)3(NMe3) (1) and Ph2PCCPPh2 (dppa) produces W(η2-PhCCPh)3(η1-Ph2PCCPPh2) (2), which contains a pendant phosphine group. Treatment of 2 with W(CO)4(NCMe)2 yields [W(η2-PhCCPh)3](μ,η2-Ph2PCCPPh2)[W(CO)4(NCMe)] (3). Compound 2 reacts with Os3(CO)10(NCMe)2 to afford Os3(CO)10[(μ,η2-Ph2PCCPPh2)W(η2-PhCCPh)3]2 (4), and reacts with Ru3(CO)9(NCMe)3 to afford Ru3(CO)9[(μ,η2-Ph2PCCPPh2)W(η2-PhCCPh)3]3 (5). The crystal structures of 2 and 3 are determined by an X-ray diffraction study.  相似文献   

5.
Mononuclear compounds M(CO)23-C3H5)(en)(X) (X = Br, M = Mo(1), W(2); X = N3, M = Mo(3), W(4); X = CN, M = Mo(5), W(6)) and cyanide-bridged bimetallic compounds [(en)(η3-C3H5)(CO)2M(μ-CN)M(CO)23-C3H5)(en)]Br (M = Mo (7), W(8)) were prepared and characterized. These compounds are fluxional and display broad unresolved proton NMR signals at room temperature. Compounds 1-6 were characterized by NMR spectroscopy at −60 °C, which revealed isomers in solution. The major isomers of 1-4 adopt an asymmetric endo-conformation, while those of 5 and 6 were both found to possess a symmetric endo-conformation. The single crystal X-ray structures of 1-6 are consistent with the structures of the major isomer in solution at low temperature. In contrast to mononuclear terminal cyanide compounds 5 and 6, cyanide-bridged compounds 7 and 8 were found to adopt the asymmetric endo-conformation in the solid state.  相似文献   

6.
7.
The complexes Cp′Mo(CO)2(η3-C3H5) [Cp′ = η5-C5H5 (1), η5-C5H4Me (2), η5-C5Me5 (3)] have been prepared, structurally characterised by X-ray diffraction (2, 3), and tested as catalyst precursors for the epoxidation of olefins at 55 °C. Complex 1 gave a turnover frequency (TOF) of 310 mol molMo−1 h−1 in the epoxidation of cis-cyclooctene with tert-butylhydroperoxide (TBHP, in decane) as oxidant, and 1,2-epoxycyclooctane was obtained quantitatively within 6 h. A similar result was obtained for complex 2, while the TOF for 3 was about one order of magnitude lower, suggesting a possible activity dependence on the ring substituents. For 1 the use of 1,2-dichloroethane as solvent increased the initial reaction rate to 361 mol molMo−1 h−1, with no decrease in epoxide selectivity. Under these conditions the reaction rates for other olefins increased in the order 1-octene < trans-2-octene < cyclododecene < (R)-(+)-limonene < cis-cyclooctene, and, with the exception of limonene, the corresponding epoxide was the only product. For 1 the selective epoxidation of cis-cyclooctene could also be achieved in aqueous solution, using TBHP or H2O2 as oxidants, which gave epoxide yields of 99% and 27% at 24 h, respectively. The possibility of facilitating catalyst recycling by using ionic liquids as solvents was investigated.  相似文献   

8.
Alkylation of PdCl2(dotpm) (dotpm = bis(di-ortho-tolylphosphino)methane) with n-butyllithium produces the binuclear Pd(0) complex Pd2(μ-dotpm)2 and the elimination byproducts 1-butene, cis-2-butene, trans-2-butene, butane, and octane. The dibutyl complex, Pd(dotpm)(n-Bu)2, is presumed to be the reaction intermediate. The crystal structure of Pd2(μ-dotpm)2 reveals that the methylene groups of the bridging dotpm ligands are located on opposite sides of the Pd2P4 unit, forming an 8-membered ring that is in an elongated chair conformation. The four phosphorus atoms are not coplanar, and the P1-P2-P3-P4 ring has a torsion angle of 13.8°, which minimizes the spatial interactions among the o-tolyl rings. The Pd-Pd bond distance is 2.8560(6) Å, which indicates that there is a weak “closed-shell” bonding interaction between the d10-d10 metal centers. Each palladium atom has a nearly linear geometry, and the eight methyl groups of the dotpm ligands shield the open coordination sites on the metal centers. Four methyl groups shield the metal atoms above and below the Pd2P4 ring cavity, and four methyl groups block the open metal sites outside of the Pd2P4 ring. The Pd2(μ-dotpm)2 complex readily undergoes oxidative addition of dichloromethane to form the rigid A-frame complex Pd2Cl2(μ-CH2)(μ-dotpm)2.  相似文献   

9.
Several Ru(II) complexes (η5-C5H4CO2H)Ru(η2-L)I have been prepared by the hydrolysis of the ester linkage in (η5-C5H4CO2t-Bu)Ru(η2-L)Cl with trimethylsilyl iodide. The hydrides (η5-C5H4CO2H)Ru(η2-L)H may be prepared by reduction of the iodide complexes in KOH/MeOH solutions followed by acidification. Complexes with several chelating bisphosphine ligands have been prepared in this way. The carboxylate anions [(η5-C5H4CO2)Ru(η2-L)H] are readily protonated by weak acids to give the carboxyCp complexes. The pKa of the carboxy proton of (η5-C5H4CO2H)Ru(dppe)H (dppe = 1,2-bis(diphenylphosphino)ethane) is 11.3 in DMSO. Protonation of the neutral hydride complex (η5-C5H4CO2H)Ru(dppf)H gives the cationic dihydride (η5-C5H4CO2H)Ru(dppf)H+2; the dihydride structure has been confirmed by measuring the T1 of its 1H NMR hydride resonance over a range of temperatures. The oxidations of the halide complexes (η5-C5H4CO2H)Ru(dppf)I and (η5-C5H4CO2t-Bu)Ru(dppf)Cl (dppf = 1,1′-bis(diphenylphosphino)ferrocene) have been studied by cyclic voltammetry.  相似文献   

10.
Reactions of [3,3-(PPh3)2-3-Cl-3-H-3,1,2-closo-RuC2B9H11] (1) and its exo-nido isomer [exo-5,6,10-{Ru(Ph3P)2Cl}-5,6,10-(μ-H)3-10-H-7,8-nido-C2B9H8] (2) with NH4PF6 in methanol or ethanol solution followed by heating in the presence of an excess of phenylacetylene (3) affords a mixture of two isomeric closo species [3,3-{(1′-3′-η3):(5′,6′-η2)-ortho-C6H4PPh2CHC(Ph)CHCHPh}-8-(σ-CHCHPh)-3,1,2-closo-RuC2B9H10] (4) and [3,3-{(1′-3′-η3):(5′,6′-η2)-ortho-C6H4PPh2CHC(Ph)CHCHPh}-4-(σ-CHCHPh)-3,1,2-closo-RuC2B9H10] (5) in which boron vertexes in β- and α-sites with respect to the cage carbons bear the (E)-CHCHPh group. The X-ray diffraction study of 4 together with the multinuclear NMR data for 4 and 5 revealed that such an unusual η32-phosphacarbocyclic ligand in both isomeric complexes is formed by specific insertion of the initially metal-bound PPh3 group into the chain of two alkyne molecules coupled in a “head-to-tail” fashion around the metal vertex.  相似文献   

11.
A new nano-sized Pb(II) one-dimensional coordination polymer with η2 Pb-C interactions, [Pb23-ba)22-ba)2]n (1) [ba = benzylacetylacetonate] has been synthesized and characterized by SEM, X-ray powder diffraction, IR spectroscopy and elemental analyses. Single-crystal X-ray diffraction shows the coordination number of Pb(II) ions is seven and the lead atoms have hemidirected coordination sphere containing involving Pb?C interactions, C2O7Pb. PbO nanoparticles were obtained by calcinations of the nano-sized compound 1 at 600 °C.  相似文献   

12.
Low temperature photoreaction between tungsten hexacarbonyl and ferrocenylacetylene yielded two unusual metal containing stable compounds, the tritungsten cluster, [W3(μ-η22- (H)CCFc)2(CO)12] (1), and ditungsten-1,4,5,8-ferrocenylcyclodecatetraene, [W2{μ-η2222-(Fc)CC(H)C(H)C(Fc)C(Fc)C(H)C(H)C(Fc)}(CO)6] (2). Both compounds were characterised by IR and 1H and 13C NMR spectroscopy and their molecular structures established by single crystal X-ray diffraction methods.  相似文献   

13.
The reaction of bis(2-pyridylmethyl)amine (II) with t-butylamine and dimethylzinc gives the heteroleptic [(MeZn)2{μ-N(H)tBu}{μ-N(CH2Py)2}] (1). Stoichiometric alcoholysis of 1 with methanol leads to the exchange of the μ-N(H)tBu moiety. Almost quantitatively the corresponding methoxide [(MeZn)2(μ-OMe){μ-N(CH2Py)2}] (2) is formed. Alternatively bis(alkylzinc)methoxide-bis(2-pyridylmethyl)amides (Alkyl = methyl (2), bis(trimethylsilyl)methyl) (3)) are also accessible by direct zincation of bis(2-pyridylmethyl)amine (II) and methanol with dialkylzinc regardless of the bulkiness of the alkyl groups. Extensive DFT calculations on the alcoholysis mechanism reveal the preferential insertion of methanol into a zinc amide bond rather than the cleavage of zinc carbon bonds. An intermediate with a Zn[μ-(MeO?H?NHR)]Zn functionality is predicted. Aminolyis of 1 with t-butylamine leads to intermediates with Zn[μ-(RNH ? H ? NHR)]Zn functionalities, respectively. We were able to detect the latter by 1H NMR spectroscopy. The aminolysis of 1 with an excess of phenylamine results in a partial decomposition of the complex leading to the hexanuclear amide [{Zn(μ-N(H)Ph)}{MeZn(μ-N(H)Ph)}2{μ-N(CH2Py)2}]2 (4). Compound 2 is able to cleave silicon grease when dissolved in t-butylamine yielding [(MeZn)2{μ-N(CH2Py)2}2Zn{μ-(OMe2Si)2O}] (5). The X-ray structures of complexes 1-5 are discussed.  相似文献   

14.
Eight new copper(II) complexes with halo-aspirinate anions have been synthesized: [Cu2(Fasp)4(MeCN)2]?·?2MeCN (1), [Cu2(Clasp)4(MeCN)2]?·?2MeCN (2), [Cu2(Brasp)4(MeCN)2]?·?2MeCN (3), {[Cu2(Fasp)4(Pyrz)]?·?2MeCN} n (4), {[Cu2(Clasp)4(Pyrz)]?·?2MeCN} n (5), [Cu2(Brasp)4(Pyrz)] n (6), [Cu2(Clasp)4(4,4′-Bipy)] n (7), and [Cu2(Brasp)4(4,4′-Bipy)] n (8) (Fasp: fluor-aspirinate; Clasp: chloro-aspirinate; Brasp: bromo-aspirinate; MeCN: acetonitrile; Pyrz: pyrazine; 4,4′-Bipy: 4,4′-bipyridine). The crystal structure of two 2 and 4 have been determined by X-ray diffraction methods. All compounds have been studied employing elemental analysis, IR, and UV-Visible spectroscopic techniques. The results have been compared with previous data reported for complexes with similar structures.  相似文献   

15.
β-CaAlF5 was synthesized by solid-state reaction. The precise structure was refined from X-ray powder diffraction data in the monoclinic space group P21/c with lattice constants , , , and β=109.91° (Z=4). The structure exhibits isolated chains of octahedra sharing opposite corners.19F and 27Al solid state NMR spectra were recorded using MAS and SATRAS techniques. An EPR spectrum was recorded for β-CaAlF5:Cr3+. The experimental spectra were simulated in order to extract the NMR and EPR parameter values. Five fluorine sites and one low symmetry aluminium site were found in agreement with the refined structure.These parameters were calculated using empirical and ab-initio methods. The agreement obtained between the calculated 19F chemical shift values, 27Al quadrupolar parameters, Cr3+ EPR fine structure parameters and the experimental results demonstrates the complementarity of XRD, magnetic resonance experiments and theoretical methodologies.  相似文献   

16.
cis-(η5-MeC5H4)W(CO)2P(OiPr)3I (1) was converted to the trans isomer 2 in the solid state (90-110 °C). The reaction was monitored by heating 1 in NMR tubes for periods of time (2-60 min), cooling the tubes to room temperature and determining the conversion by solution 31P and 1H NMR spectroscopy. The data were consistent with a first-order reaction and yielded an activation energy of 59 ± 3 kJ mol−1. Comparative kinetic data were obtained from an in situ analysis of a powder-XRD study of 1. The powder-XRD study was conducted at 80-100 °C (10-60 min), yielding an activation energy of 52 ± 2 kJ mol−1 (first-order reaction). The reaction could not be monitored by single crystal X-ray diffraction as the crystal disintegrated over time on heating. This disintegration process was monitored by optical microscopy and revealed that while the bulk crystal morphology was retained the crystal surface roughened with time. The compounds 1 and 2 were also structurally characterised by X-ray crystallographic techniques.  相似文献   

17.
Thermal treatment of C9H7SiMe2C9H7 and C9H7Me2SiOSiMe2C9H7 with Ru3(CO)12 in refluxing xylene gave the corresponding diruthenium complexes (E)[(η5-C9H6)Ru(CO)]2(μ-CO)2 [E = Me2Si (1), Me2SiOSiMe2 (2)]. A desilylation product [(η5-C9H7)Ru(CO)]2(μ-CO)2 (3) was also obtained in the latter case. Similar treatment of C9H7Me2SiSiMe2C9H7 with Ru3(CO)12 gave a novel indenyl nonanuclear ruthenium cluster Ru96-C)(CO)143522-C9H7)2 (5) with carbon-centered tricapped trigonal prism geometry, in addition to the diruthenium complex (Me2SiSiMe2)[(η5-C9H6)Ru(CO)]2(μ-CO)2 (4) and the desilylation product 3. Complex 4 can undergo a thermal rearrangement to form the product [(Me2Si)(η5-C9H6)Ru(CO)2]2 (6). The molecular structures of 1, 2, 4, 5, and 6 were determined by X-ray diffraction.  相似文献   

18.
A polymeric coordination compound, [Ba(H2O) 2(Hba)2] (1) (H2ba – barbituric acid, C4H4N2O3), was obtained. The structure of 1 was solved using powder X-ray diffraction methods. The Ba2+ ion in 1 formed a three-capped trigonal prism. The BaO9 polyhedra, connected with each other by the edges and faces, formed a chain. Several 4- and 12-membered cycles due to the bridging μ2-H2O and bridging μ3-Hba also formed implementing a 3-D polymer structure. The structures of 1 and other thiobarbiturate complexes were compared. The replacement of a S atom by an O atom in the heterocyclic ligand Htba? (thiobarbiturate ion) of the compound Ba(H2O)2(Htba)2 resulted in changes of the coordination number Ba(II) and supramolecular structure. The intermolecular hydrogen bonds O–H?O and N–H?O formed a 3-D net where pronounced 2-D layers of Hba ions could be found. A new topological net in 1 was observed. The IR and thermal stability were investigated.  相似文献   

19.
The reactions of (M = Mo, W) with α,α′-p-, m- and o-dichloro-xylenes yielded p-, m- and o-xylyl bridged dinuclear complexes of in high yields. All of such new complexes are stable to air and water, even stable in dilute acids and bases.  相似文献   

20.
Effect of doping with Zr(Re) on the structure and physical-mechanical properties of β-rhombohedral boron has been studied. In all specimens p-type conductivity was found. Internal friction and dynamic shear modulus of the specimens were investigated at frequencies of torsion oscillations (0.5-5 Hz) in the temperature range 80<T<1000 K. The increase of Zr(Re) concentration in the samples results in increase of their hole concentration, this increasing and shifting the observed IF maxima to lower temperatures; activation energy of the maxima and frequency factor of the relaxation processes decrease by 10-15%. Effects of change of the structure-sensitive properties observed in Zr-(Re)-doped boron are analyzed in view of changes of activation energy necessary for the motion of twinning boundaries and stacking faults.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号