首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dimanganese hydride complexes [Mn2(μ-H)2(CO)6(μ-L2)] [L2 = (EtO)2POP(OEt)2 (tedip), Ph2PCH2PPh2 (dppm)] react with primary and secondary silanes H2SiPhR (R = Ph, Me, H) to give the corresponding derivatives [Mn2(μ-H2SiPhR)(CO)6(μ-L2)] having a silane molecule displaying a relatively unusual μ-κ22 coordination mode (averaged values are ca. Mn-H = 1.59 Å, H-Si = 1.69 Å and Mn-Si = 2.381 Å, when R = Ph and L2 = tedip). These complexes display in solution cis and/or trans arrangement of the bridging silane relative to the diphosphorus ligands (and facial and/or meridional arrangements of the corresponding carbonyl ligands), depending on the bridging groups. The novel unsaturated dihydride [Mn2(μ-H)2(CO)6(μ-dmpm)] (dmpm = Me2PCH2PMe2) has been prepared through the reaction of [Mn2(μ-Cl)2(μ-dmpm)(CO)6] and 5 equiv of Li[BH2Me2] in tetrahydrofuran followed by addition of water. The dihydride complexes [Mn2(μ-H)2(CO)6(μ-L2)] (L2 = tedip, dppm, dmpm) react with HSnPh3 to give different mixtures of products strongly dependent on the particular reaction conditions. We have thus been able to isolate and characterize five new types of dimanganese-tin derivatives: [Mn2(μ-SnPh2)2(CO)6(μ-L2)], [Mn2(μ-H)(μ-Ph2SnO(H)SnPh2)(CO)6(μ-L2)] (average values are Mn-Sn = 2.54 Å, Sn-O = 2.11 Å, when L2 = tedip), [Mn2(μ-H)(μ-κ12-HSnPh2)(CO)6(μ-L2)], [Mn2(μ-H)(μ-κ11-O(H)SnPh2)(CO)6(μ-L2)], and [Mn2(μ-H)(SnPh3)(CO)7(μ-L2)] (Mn-Mn = 3.237(1) Å, Mn-Sn = 2.642(1) Å, when L2 = dppm).  相似文献   

2.
A convenient synthesis and the characterization of six new electronically and coordinatively unsaturated complexes of the formula [Ru2(CO)4(μ-H)(μ-PtBu2)(μ-L2)] (2b-g) (RuRu) is described exhibiting a close relation to the known [Ru2(CO)4(μ-H)(μ-PtBu2)(μ-dppm)] (2a). The complexes 2b-g were obtained in a kind of one-pot synthesis starting from [Ru3(CO)12] and PtBu2H in the first step followed by the reaction with the bidentate bridging ligand in the second step. The method was developed for the following bridging ligands (μ-L2): dmpm (2b, dmpm = Me2PCH2PMe2), dcypm (2c, dcypm = Cy2PCH2PCy2), dppen (2d, dppen = Ph2PC(=CH2)PPh2), dpppha (2e, dpppha = Ph2PN(Ph)PPh2), dpppra (2f, dpppra = Ph2PN(Pr)PPh2), and dppbza (2g, dppbza = Ph2PN(CH2Ph)PPh2). The molecular structures of all new complexes 2bg were determined by X-ray diffraction.  相似文献   

3.
Treatment of unsaturated [Os3(CO)83-Ph2PCH2P(Ph)C6H4}(μ-H)] (2) with tBuNC at room temperature gives [Os3(CO)8(CNBut)){μ3-Ph2PCH2P(Ph)C6H4}(μ-H)] (3) which on thermolysis in refluxing toluene furnishes [Os3(CO)7(CNBut){μ3-Ph2PCHP(Ph)C6H4}(μ-H)2] (4). Reaction of the labile complex [Os3(CO)9(μ-dppm)(NCMe)] (5) with tBuNC at room temperature affords the substitution product [Os3(CO)9(μ-dppm)(CNBut)] (6). Thermolysis of 6 in refluxing toluene gives 4. On the other hand, the reaction of unsaturated [Os3(CO)932-C7H3(2-Me)NS}(μ-H)] (7) with tBuNC yields the addition product [Os3(CO)9(CNBut){μ-η2-C7H3(2-Me)NS}(μ-H)] (8) which on decarbonylation in refluxing toluene gives unsaturated [Os3(CO)8(CNBut){μ32-C7H3(2-Me)NS}(μ-H)] (9). Compound 9 reacts with PPh3 at room temperature to give the adduct [Os3(CO)8(PPh3)(CNBut){μ-η2-C7H3(2-Me)NS(μ-H)] (10). Compound 8 exists as two isomers in solution whereas 10 occurs in four isomeric forms. The molecular structures of 3, 6, 8, and 10 have been determined by X-ray diffraction studies.  相似文献   

4.
Reaction of [Mn2(CO)9(NCMe)] with tetrahydropyrimidine-2-thione (thpymSH) at 25 °C furnishes the mono- and dinuclear complexes [Mn(CO)411-SCNHC3H6NCO)] (2) and [Mn2(CO)6(μ-thpymS)2] (1), respectively. Carbon-nitrogen coupling is observed in compound 2 resulting in the formation of κ11-SCNHC3H6NCO ligand while compound 1 adopts a centrosymmetric structure. Reaction of 1 with [Os3(CO)10(NCMe)2] at 80 °C affords the mixed Mn-Os cluster [MnOs3(CO)133-thpymS)] (3) which possesses a butterfly skeleton of four metal atoms whereas with Ru3(CO)12 at 110 °C gives the mixed Mn-Ru complex [MnRu3(CO)144-S)(κ11-thpym)] (4). In contrast, treatment of 1 with Fe3(CO)12 at 80 °C furnishes two triiron complexes [Fe3(CO)93-S)(μ311-C4H6N2)] (5) and [Fe3(CO)83-S)21-C4H8N2)] (6). The former also results from the direct reaction of thpymSH with Fe3(CO)12 and reacts with H2S to afford 6. The molecular structures of all these new complexes have been determined by X-ray diffraction studies.  相似文献   

5.
Reactions of the trinuclear iron cluster [Fe3Cp2(CO)3(μ-CO)(μ3-CO)(μ3-CF3C2CF3)] (1) with the bis(phosphino) ligands dppm and dppe give different results: dppe yields mainly the hexanuclear compound (2) in which two tri-iron cluster units are linked by the diphosphine, although a trinuclear derivative (3) with a chelating dppe ligand is also obtained as a minor product, whereas dppm displaces carbonyl to give complexes containing exclusively a single tri-iron unit, though the phosphine may be either dangling (4) or chelating (5). The complexes 2-5 have been characterised by elemental analyses and from their IR and NMR spectra, supplemented in the case of 2 by a single crystal X-ray diffraction analysis.  相似文献   

6.
Reaction of [Ru3(CO)10(μ-dppm)] (1) with H2S at 66 °C affords high yields of the sulfur-capped dihydride [Ru3(CO)7(μ-H)2(μ-dppm)(μ3-S)] (2), formed by oxidative-addition of both hydrogen-sulfur bonds. Hydrogenation of [Ru3(CO)7(μ-dppm)(μ3-CO)(μ3-S)] (3) at 110 °C also gives 2 in similar yields, while hydrogenation of [Ru3(CO)7(μ-dppm)(μ3-CO)(μ3-Se)] (4) affords [Ru3(CO)7(μ-H)2(μ-dppm)(μ3-Se)] (5) in 85% yield. The molecular structures of 2 and 5 reveal that the diphosphine and one hydride simultaneously bridge the same ruthenium-ruthenium edge with the second hydride spanning one of the non-bridged edges. Both 2 and 5 are fluxional at room temperature being attributed to hydride migration between the non-bridged edges. Addition of HBF4 to 2 affords the cationic trihydride [Ru3(CO)7(μ-H)3(μ-dppm)(μ3-S)][BF4] (6) in which the hydrides are non-fluxional due to the blocking of the free ruthenium-ruthenium edge.  相似文献   

7.
The heteronuclear cluster RuOs3(μ-H)2(CO)13 (1) reacted readily with a number of ditertiary phosphines under chemical activation with trimethylamine-N-oxide. The solid-state and solution structures of these derivatives have been examined. Six structural types have been characterized crystallographically, including one in which a phenyl group migrates from the ditertiary phosphine ligand to the metal framework. There are many more isomers present in solution, most of which are rapidly inter-converting via hydride migrations.  相似文献   

8.
Allene reacts with the benzothiazolide clusters [Os3(CO)93-NSC7H3R)(μ-H)] (R = H, Me) to afford the bridging allyl complexes [Os3(CO)7(μ-CO)2(μ-NSC7H3R)(μ-η121-CH2CHCH2)] resulting from insertion of allene into the metal-hydride. Both have been crystallographically characterized and differ with respect to the relative arrangement of allyl and benzothiazolide at the triosmium centre.  相似文献   

9.
10.
Treatment of the salicylaldimine ligands (L1H, L2H, L3H, L4H and L5H) with palladium(II) acetate in absolute ethanol gave the orthopalladation dinuclear [Pd(L1)(μ-OAc)]2, [Pd(L2)(μ-OAc)]2 and mononuclear [Pd(L3)2] with the tetradentate ligands [N, C, O] or [N, O] moiety. The ligands L1H and L2H are coordinated through the imine nitrogen and aromatic ortho carbon atoms, whereas the ligand L3H coordinated through the imine nitrogen and phenolic oxygens atoms. The Pd(II) complexes have a square-planar structure and were found to be effective catalysts for the hydrogenation of both nitrobenzene and cyclohexene. These metal complexes were also tested as catalysts in Suzuki-Miyaura coupling of aryl bromide in the presence of K2CO3. The catalytic studies showed that the introduction of different groups on the salicyl ring of the molecules effected the catalytic activity towards hydrogenation of nitrobenzene and cyclohexene in DMF at 25 and 45 °C. The Pd(II) complexes easily prepared from cheap materials could be used as versatile and efficient catalysts for different C-C coupling reactions (Suzuki-Miyaura reactions). The structure of ligands and their complexes was characterized by UV-Vis, FT-IR, 1H and 13C NMR, elemental analysis, molar conductivity, as well as by electrochemical techniques.  相似文献   

11.
The heteronuclear cluster RuOs3(μ-H)2(CO)13 (1) reacts with indene under thermal activation to afford the novel clusters RuOs3(μ-H)(CO)9(μ-CO)25-C9H7) (3), RuOs3(μ-H)(CO)93522-C9H7) (4) and Ru2Os3(μ-H)(CO)113522-C9H7) (5), the latter two possessing indenyl ligands in the μ3522 bonding mode. Cluster 5 exists as a mixture of two isomers. The inter-relationship among the clusters has also been investigated.  相似文献   

12.
The heteronuclear cluster RuOs3(μ-H)2(CO)13 (4) reacts with refluxing toluene to form the clusters Ru2Os3(μ-H)2(CO)16 (5) RuOs3(CO)9(μ-CO)26-C6H5Me) (6) and Ru2Os3(CO)12(μ-CO)(η6-C6H5Me) (7). Cluster 5 exists as a mixture of five isomers. The inter-relationship among the clusters has also been investigated.  相似文献   

13.
The reaction between AuMe(PPh3) and Ru3(μ-H)33-CBr)(CO)9 (1) affords the novel heptanuclear cluster Au4Ru33-CMe)(Br)(CO)9(PPh3)3 (2), containing an Au/Ru3/Au trigonal pyramidal cluster face-capped by two Au(PPh3) groups and a CMe ligand, together with Au2Ru3(μ-H)(μ3-CMe)(CO)9(PPh3)2 (3), formed by isolobal replacement of two of the three μ-H atoms in 1 by Au(PPh3) groups. The latter co-crystallises with the analogous μ3-CH complex, as also shown spectroscopically.  相似文献   

14.
Two novel polynuclear complexes with methanoate anions and 3-hydroxypyridine ligands [Cu(μ-HCO2)2(3-pyOH)]n (1) and [Cu2(μ-HCO2)2(μ-3-pyOH)2(3-pyOH)2(HCO2)2]n (2), respectively, were synthesized and characterized. The central copper atom in 1 is surrounded by four methanoates and a 3-pyOH molecule, forming a square-pyramidal CuO3NO chromophore. All the methanoates are bidentate and serve as bridges between the adjacent copper ions via syn-anti and anti–anti coordination. The basal square coordination axes are formed by O(syn), N(3-pyOH) (1.974(2), 2.016(2) Å) and O(anti), O(anti) (1.945(2), 1.960(2) Å), while the third O(anti) (2.247(2) Å) is on the top of the pyramid. A ferromagnetic transition with an exchange constant 2J/kB = 9.2 cm−1 is found for 1 below 20 K. This interaction probably takes place through two syn-anti methanoates extended in a chain through the 2D structure. On the other hand, two monoatomic Cu–O–Cu intra-dinuclear asymmetric (1.986(2), 2.415(2) Å) bridges of two methanoates in [Cu2(HCO2)4(3-pyOH)4] (2) are present. An elongated distorted octahedral coordination sphere around each copper(II) atom is completed by an additional monodentate terminal methanoate (1.975(2) Å), two N-coordinated 3-pyOH (2.005(2), 2.002(2) Å) and the third weakly O-coordinated 3-pyOH (2.732(2) Å). Although a shorter Cu?Cu distance is noticed in 2 than in 1 (4.690(1) Å 1, 3.442(1) Å 2), much weaker ferromagnetism is found in 2.  相似文献   

15.
Reaction of silver(I) halides with PPh3 in acetonitrile and then with pyridine-2-thione (pySH) chloroform (1:1:1 molar ratio) has yielded sulfur bridged dimers of general formula, [Ag2X2(μ-S-pySH)2(PPh3)2] (X = Cl, 1, Br, 2). Both these complexes have been characterized using analytical data, NMR spectroscopy and single crystal X-crystallography. The central Ag2S2 cores form parallelograms with unequal Ag–S bond distances (2.5832(8), 2.7208(11) Å) in 1 and (2.6306(4), 2.6950(7) Å) in 2, respectively. The Ag?Ag contacts of compounds 1 and 2 are 3.8425(8) and 3.8211(4) Å, respectively. The angles around Ag (in the range 87.19(2)–121.71(2)° in 1 and 87.81(2)–121.53(2)° in 2) reveal highly distorted tetrahedral geometry. There are inter dimer π–π stacking interactions between pyridyl rings (inter ring distances of 3.498 and 3.510 Å in complexes 1 and 2, respectively). The solution state 31P NMR spectroscopy has shown the existence of both monomers and dimers. The studies reveal relatively weaker intramolecular –NH?Cl hydrogen bonding in case of AgCl vis-à-vis that in CuCl which favored both a monomer and a dimer with AgCl, and only a monomer with CuCl.  相似文献   

16.
The synthesis and spectroscopic properties of a Na complex with ligand 3-aminopyrazine-2-carboxylic acid were described. The resulting complex was characterized by elemental analysis, IR, UV-Vis, NMR spectroscopy and single crystal X-ray diffraction method. The title compound crystallizes in the triclinic system with space group . The crystalline structure of this compound consists of supramolecular architectures involving strong intramolecular N—H…O in pyrazine molecules and intermolecular O—H…N, O—H…O, and N—H…N hydrogen bonds between substituted pyrazine and water molecules.  相似文献   

17.
Relativistic scalar and spin-orbit density functional calculations of the electronic structure, Nucleus-Independent Chemical Shift (NICS) index and ELF function of the [Re2(CO)8(μ-BiPh)2] and [Re2(CO)8(μ-BiPh2)2] clusters are reported. We show here that the [Re2(CO)8(μ-BiPh)2] cluster has large negative NICS values in the region defined by the Re-Bi-Re-Bi four-membered ring and the ELF function shows significant electron delocalization density in the center of the metallic ring, thus indicating an aromatic cluster. In contrast the Re-Bi-Re-Bi four-membered ring in the [Re2(CO)8(μ-BiPh2)2] cluster has negligible paratropic ring currents and the ELF function shows a low-density region within the metallic ring indicating that aromaticity is switched off. However, the phenyl ligands in both clusters show the expected aromatic character.  相似文献   

18.
Oxo/hydoxo zirconium(IV) complex of the general formula [Zr63-O)43-OH)4(OOCCH2tBu)92-OH)3]2 has been isolated, when Zr(OiPr)4 reacted with a 2-fold excess of 3,3-dimethylbutyric acid. Single crystal X-ray diffraction data, collected at 103 and 153 K, showed that the studied compound crystallizes in hexagonal system (P63/m (no. 176)). Structure consists of dimers composed of [Zr63-O)43-OH)4(OOCCH2tBu)9] sub-units, linked by six μ2-OH bridges. Infrared spectroscopic studies proved the presence of hydroxo groups in the structure of studied clusters and formation of different types of oxo/hydroxo bridges. The application of variable temperature infrared spectroscopy and differential scanning calorimetry revealed that the structure of this complex undergoes the phase transitions at 143–183 and 203–293 K. Comparison of spectral and crystallographic data suggests that these phase transitions might be related to changes in the strength of Zr–O bonds of μ2-OH bridges linking complex sub-units, and change in symmetry of the crystal lattice (from hexagonal to trigonal). Analysis of thermogravimetric data showed that decomposition of [Zr63-O)43-OH)4(OOCCH2tBu)92-OH)3]2 proceeds with complete conversion to ZrO2 (monoclinic form) between 603 and 803 K.  相似文献   

19.
Five new copper(I)/silver(I) complexes containing 2-aminopyridine, [Cu(μ-Cl)(2-Apy)(PPh3)]2(1), [Ag(μ-Cl)(2-Apy)(PPh3)]2(2), [Ag(μ-Br)(2-Apy)PPh3)]2(3), [Ag(μ-ONO2)(2-Apy)(PPh3)]2(4), [Ag(μ-ONO2)(2-Apy)(AsPh3)]2(5) have been synthesised for the first time. Complexes 15 are obtained by the reactions of MX (MX = CuCl for 1; M = Ag for 2–5; X = Cl, Br for 23; X = NO3 for 4–5) with the monodentate ligands EPh3 (E = P for 14; E = As for 5) and 2-Apy in the molar ratio of 1:1:2 in the mixed solvent of CH2Cl2 and MeOH. Complexes 15 are characterised by IR and X-ray diffraction. In 15, chloride, bromide and nitrate ions bridge two metal atoms to form dinuclear complexes containing the parallelogram cores M2X2 (M = Cu, Ag).  相似文献   

20.
合成了一个新的双膦配位体2,6-双(二苯基膦乙基)溴苯,通过Pd  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号