首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A series of organotin(IV) complexes with O,O-diethyl phosphoric acid (L1H) and O,O-diisopropyl phosphoric acid (L2H) of the types: [R3Sn · L]n (L = L1, R = Ph 1, R = PhCH22, R = Me 3, R = Bu 4; L = L2, R = Ph 9, R = PhCH210, R = Me 11, R = Bu 12), [R2Cl Sn · L]n (L = L1, R = Me 5, R = Ph 6, R = PhCH27, R = Bu 8; L = L2, R = Me 13, R = Ph 14, R = PhCH215, R = Bu 16), have been synthesized. All complexes were characterized by elemental analysis, TGA, IR and NMR (1H, 13C, 31P and 119Sn) spectroscopy analysis. Among them, complexes 1, 2, 3, 5, 8, 9 and 11 have been characterized by X-ray crystallography diffraction analysis. In the crystalline state, the complexes adopt infinite 1D infinite chain structures which are generated by the bidentate bridging phosphonate ligands and the five-coordinated tin centers.  相似文献   

2.
Eight dialkylgallium complexes of type R2GaL [(M = Me, L = 1-(2-pyridyl)methyleneimino-2-naphthonato (1), M = Et, L = 1-(2-pyridyl)methyleneimino-2-naphthonato (2), M = Me, L = 1-phenylmethyleneimino-2-naphthonato (3), M = Et, L = 1-phenylmethyleneimino-2-naphthonato (4), M = Me, L = 1-(p-methoxylphenyl)methyleneimino-2-naphthonato (5), M = Me, L = 1-(3,4-dimethoxylphenyl)methyleneimino-2-naphthonato (6), M = Me, L = 1-naphthylmethyleneimino-2-naphthonato (7), M = Me, L = 1-naphthylmethyleneimino-2-naphthonato (8)) have been synthesized by reaction of trialkylgallium with appropriate 1-arylmethyleneimino-2-naphthols. The complexes have been characterized by elemental analysis, 1H NMR, IR and mass spectrometry. Structure of dimethyl[1-(2-pyridyl)methyleneimino-2-naphthonato]gallium (1) has been determined by X-ray single crystal analysis. Ga atom is five coordinate in the structure. Photoluminescent properties have been measured. The maximum emission wavelengths are in the range of 358 and 412 nm with the intensity of 13-325 a.u. The electroluminescent properties of 3, 5, 7 and 8 have been measured. The maximum emission wavelengths are in the range of 450 and 480 nm.  相似文献   

3.
A terminally coordinated CO ligand in the complexes [Fe2{μ-CN(Me)R}(μ-CO)(CO)2(Cp)2][SO3CF3] (R = Me, 1a; R = Xyl, 1b; Xyl = 2,6-Me2C6H3), is readily displaced by primary and secondary amines (L), in the presence of Me3NO, affording the complexes [Fe2{μ-CN(Me)R}(μ-CO)(CO)(L)(Cp)2][SO3CF3] (R = Me, L = NH2Et, 4a; R = Xyl, L = NH2Et, 4b; R = Me, L = NH2Pri, 5a; R = Xyl, L = NH2Pri, 5b; R = Xyl, L = NH2C6H11, 6; R = Xyl, L = NH2Ph, 7; R = Xyl, L = NH3, 8; R = Me, L = NHMe2, 9a; R = Xyl, L = NHMe2, 9b; R = Xyl, = NH(CH2)5, 10). In the absence of Me3NO, NH2Et gives addition at the CO ligand of 1b, yielding [Fe2{μ-CN(Me)(Xyl)}(μ-CO)(CO){C(O)NHEt}(Cp)2] (11). Carbonyl replacement is also observed in the reaction of 1a-b with pyridine and benzophenone imine, affording [Fe2{μ-CN(Me)R}(μ-CO)(CO)(L)(Cp)2][SO3CF3] (R = Me, L = Py, 12a; R = Xyl, L = Py, 12b; R = Me, L = HNCPh2, 13a; R = Xyl, L = HNCPh2, 13b). The imino complex 13b reacts with p-tolylacetylide leading to the formation of the μ-vinylidene-diaminocarbene compound [Fe2{μ-η12- CC(Tol)C(Ph)2N(H)CN(Me)(Xyl){(μ-CO)(CO)(Cp2)] (15) which has been studied by X-ray diffraction.  相似文献   

4.
The thermally unstable adduct TpMe2Ir(C2H4)(DMAD), which was generated “in situ” by the reaction of DMAD with TpMe2Ir(C2H4)2 (1) at low temperature, reacted with different carboxylic acids to produce the following compounds: TpMe2Ir(E-C(CO2Me)CH(CO2Me))(H2O)(OC(O)C6H4R), (R = H, 2a; o-OH, 2b; o-Cl, 2c; m-Cl, 2d; o-NO2, 2e; m-NO2, 2f;o-Me, 2g;p-Me, 2h) and TpMe2Ir(E-C(CO2Me)CH(CO2Me))(H2O)(OC(O)Me) 3. In the reaction of derivative 2a with Lewis bases, TpMe2Ir(E-C(CO2Me)CH(CO2Me))(L)(OC(O)C6H5), (L = Py, 4a; m-Br-Py, 4b; m-Cl-Py, 4c; NCMe, 5) were obtained, of which 4b and 4c were isolated as a mixture of two isomers in which the substituted pyridine ring was present at different rotational orientations. All new compounds prepared were characterized by 1H and 13C{1H} NMR spectroscopy, the structure of compounds 2d, 2h and 4a being determined by X-ray diffraction analysis. DFT was used to analyze the relative stability and the structural orientation of the isomers.  相似文献   

5.
Ruthenium piano-stool complexes incorporating the new bidentate aminoalkylphosphine ligand 1,2-bis(dipyrrolidin-1-ylphosphino)ethane (dpyrpe, I) or its monodentate counterpart bis(pyrrolidin-1-yl)methylphosphine (pyr2PMe, II) have been prepared, [(C5R5)RuCl(PP)] (R = Me and PP = dpyrpe, 1; R = Me and PP = (pyr2PMe)2, 2; R = H and PP = dpyrpe, 3). Complexes 2 and 3 have been characterized by X-ray crystallography. Complexes 1 and 2 react with NaBAr4f in the presence of ligand L to yield [CpRu(L)(dpyrpe-κ2P)][BArf4] (L = MeCN, 4a; CO, 4b; N2, 4c) and [CpRu(L)(pyr2PMe)2][BAr4f] (L = MeCN, 5a; CO, 5b; N2, 5c). Complex 4a was crystallographically characterized. The CO complexes 4b and 5b were examined using IR spectroscopy in an attempt to establish the electron-donating capabilities of I and II. Complex 1 oxidatively adds H2 in the presence of NaBAr4f to yield the Ru(IV) dihydride [CpRuH2(dpyrpe-κ2P)][BAr4f], 7.  相似文献   

6.
Reactions of 0.5 eq. of the dinuclear complexes [(η6-arene)Ru(μ-Cl)Cl]2 (arene = η6-C6H6, η6-p-iPrC6H4Me) and [(Cp∗)M(μ-Cl)Cl]2 (M = Rh, Ir; Cp∗ = η5-C5Me5) with 4,6-disubstituted pyrazolyl-pyrimidine ligands (L) viz. 4,6-bis(pyrazolyl)pyrimidine (L1), 4,6-bis(3-methyl-pyrazolyl)pyrimidine (L2), 4,6-bis(3,5-dimethyl-pyrazolyl)pyrimidine (L3) lead to the formation of the cationic mononuclear complexes [(η6-C6H6)Ru(L)Cl]+ (L = L1, 1; L2, 2; L3, 3), [(η6-p-iPrC6H4Me)Ru(L)Cl]+ (L = L1, 4; L2, 5; L3, 6), [(Cp∗)Rh(L)Cl]+ (L = L1, 7; L2, 8; L3, 9) and [(Cp∗)Ir(L)Cl]+ (L = L1, 10; L2, 11; L3, 12), while reactions with 1.0 eq. of the dinuclear complexes [(η6-arene)Ru(μ-Cl)Cl]2 and [(Cp∗)M(μ-Cl)Cl]2 give rise to the dicationic dinuclear complexes [{(η6-C6H6)RuCl}2(L)]2+ (L = L1, 13; L2, 14; L3, 15), [{(η6-p-iPrC6H4Me)RuCl}2(L)]2+ (L = L1, 16; L2, 17; L3, 18), [{(Cp∗)RhCl}2(L)]2+ (L = L1, 19; L2, 20; L3, 21) and [{(Cp∗)IrCl}2(L)]2+ (L = L1 22; L2, 23; L3 24). The molecular structures of [3]PF6, [6]PF6, [7]PF6 and [18](PF6)2 have been established by single crystal X-ray structure analysis.  相似文献   

7.
A series of new triorganotin(IV) pyridinecarboxylates with 6-hydroxynicotinic acid (6-OH-3-nicH), 5-hydroxynicotinic acid (5-OH-3-nicH) and 2-hydroxyisonicotinic acid (2-OH-4-isonicH) of the types: [R3Sn (6-OH-3-nic)·L]n (I) (R = Ph, L = Ph·EtOH, 1; R = Bn, L = H2O·EtOH, 2; R = Me, L = 0, 3; R = n-Bu, L = 0, 4), [R3Sn (5-OH-3-nic)]n (II) (R = Ph, 5; R = Bn, 6; R = Me, 7; R = n-Bu, 8), [R3Sn (2-OH-4-isonic·L)]n (III) (R = Bn, 9, L = MeOH; R = Me, L = 0, 10; R = Ph, 11, L = 0.5EtOH) have been synthesized. All the complexes were characterized by elemental analysis, TGA, IR and NMR (1H, 13C, 119Sn) spectroscopy analyses. Among them, except for complexes 5 and 6, all complexes were also characterized by X-ray crystallography diffraction analysis. Crystal structures show that complexes 1-10 adopt 1D infinite chain structures which are generated by the bidentate O, O or N, O and the five-coordinated tin centers. Significant O-H?O, and N-H?O intermolecular hydrogen bonds stabilize these structures. Complex 11 is a 42-membered macrocycle containing six tin atoms, and forms a 2D network by intermolecular N-H?O hydrogen.  相似文献   

8.
A series of tetrathiafulvalene-substituted 2,3-di(2-pyridyl)quinoxaline (dpq) ligands, 2-(4,5-bis(methylthio)-1,3-dithiol-2-ylidene)-6,7-di(pyridin-2-yl)- [1,3]dithiolo[4,5-g]quinoxaline (L1), dimethyl-2-(6,7-di(pyridin-2-yl)-[1,3]dithiolo[4,5-g]quinoxalin-2-ylidene)-1,3-dithiole-4,5-dicarboxylate (L2), and 2-(5,6-dihydro-[1,3]dithiolo[4,5-b] [1,4]dithiin-2-ylidene)-6,7-di(pyridin-2-yl)-[1,3]dithiolo[4,5-g]quinoxaline (L3), have been prepared. Reactions of these ligands with Re(CO)5Cl afford the corresponding dinuclear rhenium(I) carbonyl complexes, Re2(L)(CO)6Cl2 (L = L1, 5a; L = L2, 5b; L = L3, 5c). All new compounds are fully characterized by 1H NMR, IR and mass spectroscopies. The crystal structures of 5a and 5b have been studied. Optimized conformations and molecular orbital diagrams of 5a5c have been calculated with density functional theory (DFT). The spin-allowed singlet−singlet electronic transitions of all complexes have been calculated with time-dependent DFT (TDDFT), and the UV-Vis−NIR spectra are discussed based on the theoretical calculations.  相似文献   

9.
The organotin(IV) complexes R2Sn(tpu)2 · L [L = 2MeOH, R = Me (1); L = 0: R = n-Bu (2), Ph (3), PhCH2 (4)], R3Sn(Hthpu) [R = Me (5), n-Bu (6), Ph (7), PhCH2 (8)] and (R2SnCl)2 (dtpu) · L [L = H2O, R = Me (9); L = 0: R = n-Bu (10), Ph (11), PhCH2 (12)] have been synthesized, where tpu, Hthpu and dtpu are the anions of 6-thiopurine (Htpu), 2-thio-6-hydroxypurine (H2thpu) and 2,6-dithiopurine (H2dtpu), respectively. All the complexes 1-12 have been characterized by elemental, IR, 1H, 13C and 119Sn NMR spectra analyses. And complexes 1, 2, 7 and 9 have also been determined by X-ray crystallography, complexes 1 and 2 are both six-coordinated with R2Sn coordinated to the thiol/thione S and heterocyclic N atoms but the coordination modes differed. As for complex 7 and 9, the geometries of Sn atoms are distorted trigonal bipyramidal. Moreover, the packing of complexes 1, 2, 7 and 9 are stabilized by the hydrogen bonding and weak interactions.  相似文献   

10.
The visualization of inducible nitric oxide synthase (iNOS) in vivo with specific radioactive probes could provide a valuable insight into the diseases associated with upregulation of this enzyme. Aiming at that goal, we have synthesized a novel family of conjugates bearing a pyrazolyl-diamine chelating unit for stabilization of the fac-[M(CO)3]+ core (M = 99mTc, Re) and pendant guanidino (L1 = guanidine, L2 = N-hydroxyguanidine, L3 = N-methylguanidine, L4 = N-nitroguanidine) or S-methylisothiourea (L5) moieties for iNOS recognition. L1-L5 reacted with fac-[M(CO)3(H2O)]+, yielding complexes of the type fac-[M(CO)3(k3-L)]+ (M = Re/99mTc; 1/1a, L = L1; 2/2a, L = L2; 3/3a, L = L3; 4/4a, L = L4; 5/5a, L = L5), which were fully characterized by the usual analytical methods in chemistry and radiochemistry, including X-ray diffraction analysis in the case of 1. The rhenium complexes 1-5 were prepared as “cold” surrogates of the 99mTc(I) complexes. Enzymatic assays with murine purified iNOS demonstrated that L1, L2, 1 and 2 are poor NO-producing substrates. These assays have also shown that metallation of L4 and L5 (Ki > 1000 μM) gave complexes with increased inhibitory potency (4, Ki = 257 μM; 5, Ki = 183 μM). The organometallic rhenium complexes permeate through LPS-treated RAW 264.7 macrophage cell membranes, interacting specifically with the target enzyme, as confirmed by the partial suppression of NO biosynthesis (ca. 20% in the case of 4 and 5) in this cell model. The analog 99mTc(I)-complexes 1a-5a are stable in vitro, being also able to cross cell membranes, as demonstrated by internalization studies in the same cell model with compound 4a (4h, 37 °C; 33.8% internalization). Despite not being as effective as the α-amino-acid-containing metal-complexes previously described by our group, the results reported herein have shown that similar 99mTc(I)/Re(I) organometallic complexes with pendant amidinic moieties may hold potential for targeting iNOS expression in vivo.  相似文献   

11.
Reactions of the dinuclear complexes [(η6-arene)Ru(μ-Cl)Cl]2 (arene = C6H6, p-iPrC6H4Me) and [(η5-C5Me5)M(μ-Cl)Cl]2 (M = Rh, Ir) with 2-substituted-1,8-naphthyridine ligands, 2-(2-pyridyl)-1,8-naphthyridine (pyNp), 2-(2-thiazolyl)-1,8-naphthyridine (tzNp) and 2-(2-furyl)-1,8-naphthyridine (fuNp), lead to the formation of the mononuclear cationic complexes [(η6-C6H6)Ru(L)Cl]+ {L = pyNp (1); tzNp (2); fuNp (3)}, [(η6-p-iPrC6H4Me)Ru(L)Cl]+ {L = pyNp (4); tzNp (5); fuNp (6)}, [(η5-C5Me5)Rh(L)Cl]+ {L = pyNp (7); tzNp (8); fuNp (9)} and [(η5-C5Me5)Ir(L)Cl]+ {L = pyNp (10); tzNp (11); fuNp (12)}. All these complexes are isolated as chloro or hexafluorophosphate salts and characterized by IR, NMR, mass spectrometry and UV/Vis spectroscopy. The molecular structures of [1]Cl, [2]PF6, [4]PF6, [5]PF6 and [10]PF6 have been established by single crystal X-ray structure analysis.  相似文献   

12.
Seven group 14 element(IV) compounds 2-7 have been prepared, derived either (2-5) from the potassium β-diketiminate K(L) [L = {N(Ar)C(Me)}2CH, Ar = C6H3Pri2-2,6] (1) or the known lithium β-dialdiminate Li(L′)] [L′ = {N(Ar)C(H)}2CPh, Ar = C6H3Pri2-2,6]. Treatment of 1 with ButC(O)Cl, Me3SiCl, Ph3SnCl, or Me3SnCl afforded {N(Ar)C(Me)}2C(H)C(O)But (2), [ArNC(Me)C(H)C(Me)N(Ar)SiMe3] (3), [HN(Ar)C(Me)C(H)C(CH2SnPh3)N(Ar)] (4), or (5), respectively. Compounds 4 and 5 are remarkable as they have arisen from a tautomer of 1; crystalline centrosymmetric 5 has a fused tricyclic structure, a central eight-membered ring flanked by two six-membered rings. The compounds [GeCl2(L′)(OGeCl3)] (6) or [SnCl(L′)Me2] (7), the first group 14 metal β-dialdiminates, were obtained from Li(L′) and (GeCl3)2O or Me2SnCl2, respectively. The Sn(II) compound SnCl(L′) (8) was prepared from SnCl2 and K(L′). The molecular structures of the crystalline compounds 3-8 are reported.  相似文献   

13.
Four heterocyclic salts 1a-d were prepared by Ca2+-assisted cyclization of fluoro derivatives 3, and investigated by spectroscopic (NMR and UV), electrochemical, and computational (DFT and MP2) methods. The mechanism for the formation of the cations was investigated at the DFT level of theory. 2-D NMR spectroscopy for 1[ClO4] in DMSO­d6 aided with DFT results permitted the assignment of 1H and 13C NMR signals in cations 1. The molecular and crystal structures for 1a[ClO4] [C13H10ClNO4 triclinic, P−1, a=9.6517(12) Å, b=11.0470(13) Å, c=12.2373(15) Å, α=67.615(1)°, β=78.845(2)°, γ=87.559(2)°; V=1183.0(2) Å3, Z=4] and 1d[ClO4] [C12H9ClN2O4 triclinic, P−1, a=5.9525(6) Å, b=8.3141(9) Å, c=12.2591(13) Å, α=73.487(1)°, β=83.814(1)°, γ=83.456(1)°; V=576.07(10) Å3, Z=2] were determined by X-ray crystallography and compared with results of DFT and MP2 calculations. Electrochemical analysis gave the reduction potential order (1b>1c1d>1a), which is consistent with computational results.  相似文献   

14.
The hydrosulfido complexes CpRu(L)(L′)SH react with one equivalent of O-alkyl oxalyl chlorides (ROCOCOCl) to form the corresponding O-alkylthiooxalate complexes CpRu(L)(L′)SCOCO2R (L = L′ = PPh3 (1), (2); L = PPh3, L′ = CO (3); R = Me (a), Et (b)). The reactions of the hydrosulfido complexes with half equivalent of oxalyl chloride produce the bimetallic complexes [CpRu(L)(L′)SCO]2 (L = L′ = PPh3 (4), (5); L = PPh3, L′ = CO (6)). The crystal structures of CpRu(PPh3)2SCOCO2Me (1a) and CpRu(dppe)SCOCO2Et (2b) are reported.  相似文献   

15.
Two series of di and trinuclear chlorodiorganotin(IV) complexes derived from bis- and tris-dithiocarbamate ligands have been prepared and structurally characterized. The dinuclear complexes 1-2 of the composition {(R2SnCl)2(bis-dtc)} (1, R = Me; 2, R = nBu) have been obtained from R2SnCl2 (R = Me, nBu) and the triethylammonium salt of N,N′-dibenzyl-1,2-ethylene-bis(dithiocarbamate). The trinuclear complexes 3-9 with the general formula {(R2SnCl)3(tris-dtc)} 3, R = Me, tris-dtc = tris-dtc-Me; 4, R = Me, tris-dtc = tris-dtc-iPr; 5, R = Me, tris-dtc = tris-dtc-Bn; 6, R = nBu, tris-dtc = tris-dtc-Me; 7, R = nBu, tris-dtc = tris-dtc- iPr; 8, R = nBu, tris-dtc = tris-dtc-Bn; 9, R = tBu, tris-dtc = tris-dtc-Me) were prepared from R2SnCl2 (R = Me, nBu, tBu) and the potassium dithiocarbamate salts of (tris[2-(methylamino)ethyl]amine) (tris-dtc-Me), (tris[2-(isopropylamino)ethyl]amine) (=tris-dtc-iPr) and (tris[2-(benzylamino)ethyl]amine) (=tris-dtc-Bn). Compounds 1-9 have been analyzed as far as possible by elemental analysis, FAB+ mass spectrometry, IR and NMR (1H, 13C, 119Sn) spectroscopy, and single-crystal X-ray diffraction analysis. The solid state and solution studies showed that the dtc ligands are coordinated to the tin atoms in the anisobidentate manner. In all cases the metal centers are five-coordinate. The coordination geometry is intermediate between square-pyramidal and trigonal-bipyramidal coordination polyhedra with τ-values in the range of 0.32-0.53. For the members of each series characterized in the solid state by X-ray diffraction analysis, different molecular conformations were found. The crystal structures show the presence of C-H?Cl, C-H?S, C-H?π, S?Cl, S?S, Cl?Sn and S?Sn contacts.  相似文献   

16.
Benzo[1,2-h: 5,4-h′]diquinoline(1a) represents a new family of tridentate NCN pincer ligand. We report the synthesis of the parent ligand (1a) and its derivatives (1b R = Me, 1c R = t-Butyl, 1d R = Phenyl). The ligands were characterized by 1H and 13C NMR, as well as mass spectral analysis, and X-ray structural determination. They readily undergo cyclometalation with LiPdCl4, Pd(OAc)2, and K2PtCl4 to form the cyclometalated Pd(NCN)Cl (2a-c, 3a), and Pt(NCN)Cl (4a) pincer complexes. These complexes have been characterized through NMR, and mass spectrometry. PdNCNCl (2a) structure was determined by single crystal X-ray diffraction. Complex 2a has shown to catalyze the Heck coupling reaction between bromobenzene and n-butylacyrlate in NMP at 140 °C, TON of 2506 were observed.  相似文献   

17.
The dimeric rhodium precursor [Rh(CO)2Cl]2 reacts with quinoline (a) and its three isomeric carboxaldehyde ligands [quinoline-2-carboxaldehyde (b), quinoline-3-carboxaldehyde (c), and quinoline-4-carboxaldehyde (d)] in 1:2 mole ratio to afford complexes of the type cis-[Rh(CO)2Cl(L)] (1a-1d), where L = a-d. The complexes 1a-1d have been characterised by elemental analyses, mass spectrometry, IR and NMR (1H, 13C) spectroscopy together with a single crystal X-ray structure determination of 1c. The X-ray crystal structure of 1c reveals square planar geometry with a weak intermolecular pseudo dimeric structure (Rh?Rh = 3.573 Å). 1a-1d undergo oxidative addition (OA) with different electrophiles such as CH3I, C2H5I and I2 to give Rh(III) complexes of the type [Rh(CO)(COR)Cl(L)I] {R = -CH3 (2a-2d), R = -C2H5 (3a-3d)} and [Rh(CO)Cl(L)I2] (4a-4d) respectively. 1b exhibits facile reactivity with different electrophiles at room temperature (25 °C), while 1a, 1c and 1d show very slow reactivity under similar condition, however, significant reactivity was observed at a temperature ∼40 °C. The complexes 1a-1d show higher catalytic activity for carbonylation of methanol to acetic acid and methyl acetate [Turn Over Frequency (TOF) = 1551-1735 h−1] compared to that of the well known Monsanto’s species [Rh(CO)2I2] (TOF = 1000 h−1) under the reaction conditions: temperature 130 ± 2 °C, pressure 33 ± 2 bar, 450 rpm and time 1 h. The organometallic residue of 1a-1d was also isolated after the catalytic reaction and found to be active for further run without significant loss of activity.  相似文献   

18.
Dimethyl and bis[(trimethylsilyl)methyl] zirconium complexes ([OSSO]ZrR2) [4, R = Me; 5, R = CH2SiMe3] having [OSSO]-type bis(phenolato) ligand 1 based on the trans-1,2-cyclooctanediylbis(thio) core have been synthesized by the reactions of the corresponding dichloro zirconium complex 3 with 2 equiv. of MeMgBr and Me3SiCH2MgCl, respectively, in Et2O/toluene at −78 °C. The molecular structures of these complexes 3-5 were characterized by NMR spectroscopy, elemental analyses, and X-ray crystallography. 1H and 13C NMR data of complexes 3-5 exhibited that they took the C2-symmetry in solution in the NMR time scale. In the crystal structures of 3-5, each zirconium center lies at the center of a distorted octahedral coordination sphere with cis sulfur atoms and trans oxygen atoms, which adopts a cis-α [(Λ,S,S)] configuration.  相似文献   

19.
New pyridine-phosphine chalcogenide ligands, tris[2-(2-pyridyl)ethyl]phosphine sulfide 1a and tris[2-(2-pyridyl)ethyl]phosphine selenide 1b, react with zinc(II) and cadmium(II) chlorides in EtOH at room temperature to afford complexes of compositions 2ZnCl2·2L (2, L = 1a) and 3CdCl2·2L (3a,b, L = 1a,b) in high yields. The solid-state structure of complexes 2, 3 has been proved by X-ray analysis data. Complex 2 is a centrosymmetric dimer, where two atoms of zinc are bonded by two bridging pyridine-phosphine sulfide ligands through N atoms. Complexes 3a,b exist as polymeric chains with each bridging ligand acting as a chelate N,S- or N,Se-donor to one cadmium(II) center and as a pyridine N-donor to the next cadmium(II) center.  相似文献   

20.
The heteroditopic, P-N-chelating ligand diphenylphosphino(phenyl pyridin-2-yl methylene)amine (1) has been synthesised via a simple ‘one-pot’ procedure and its donor characteristics assessed. The neutral [MX(Y)(12-P-N)] (3, M = Rh, X = Cl, Y = CO; 4, M = Pd, X = Y = Cl; 5, M = Pd, X = Cl, Y = Me; 6, M = Pt, X = Y = Cl; 7, M = Pt, X = Cl, Y = Me; 8, M = Pt, X = Y = Me) and cationic [Pd(Me)(MeCN)(12-P-N)][Z] (9, Z = B{3,5-(CF3)2-C6H3}4; 10, Z = PF6) complexes of 1 have been prepared and characterised. The solid-state structures of complexes 3, 4, 6 and 7 have been established by X-ray crystallography. Reactions of [PdCl(Me)(12-P-N)] towards CO and tBuNC have been investigated, affording the corresponding η1-acyl (12) and -iminoacyl (14) complexes, respectively. Similar insertion chemistry is observed for the cationic derivative 9. Treatment of the acyl complex 12 with ethene at elevated pressure establishes an equilibrium between the starting material and the product resulting from insertion, 13. Under catalytic conditions, combination of palladium(II) with 1 in MeOH affords a selective initiator for the formation of 4-oxo-hexanoic acid methyl ester (15) from CO/ethene (38 bar, 90 °C).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号