首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The first phosphinooxazoline chelate complexes of iron were synthesized, and their structural and electronic properties were studied.The known phosphinooxazolines 2-(2-(diphenylphosphino)phenyl)-4,5-dihydrooxazole (7a), 2-(2-(diphenylphosphino)phenyl)-4,4-dimethyl-4,5-dihydrooxazole (7b), (S)-4-benzyl-2-(2-(diphenylphosphino)phenyl)-4,5-dihydrooxazole (7e) and (R)-2-(2-(diphenylphosphino)phenyl)-4-phenyl-4,5-dihydrooxazole (7f) were synthesized by a modified three step literature procedure with improved 67-60% overall yields. The new electronically tuned phosphinooxazolines 2-(5-bromo-2-(diphenylphosphino)phenyl)-4,4-dimethyl-4,5-dihydrooxazole (7c), 3-(4,4-dimethyl-4,5-dihydrooxazol-2-yl)-4-(diphenylphosphino)-N,N-dimethylaniline (7d) and 2-(2-(diphenylphosphino)-3-(trifluoromethyl)phenyl)-4,4-dimethyl-4,5-dihydrooxazole (7g) were synthesized in three to six steps with 59-29% overall yields. Reaction of 7a-f with CpFe(CO)2I (110 °C, 2 h, toluene) gave the iodide salts of the new iron phosphinooxazoline complexes [CpFe(CO)(7a-f)]+ in 87-21% yield. The new complexes were characterized by X-ray and the molecular structures confirm the octahedral coordination geometry and the half-sandwich structure about the iron center. The impact of different oxazoline ligands on the steric and electronic properties of their iron complexes was determined by analysis of selected bond lengths, νCO stretching frequency and the oxidation potentials of the ligands and the iron complexes.  相似文献   

2.
Irradiation of cis-1,2-dimethyl-1,2-diphenyl-1,2-disilacyclohexane (1a) in the presence of tert-butyl alcohol in hexane with a low-pressure mercury lamp bearing a Vycor filter proceeded with high stereospecificity to give cis-2,3-benzo-1-tert-butoxy-1,4-dimethyl-4-phenyl-1,4-disilacyclooct-2-ene (2a), in 33% isolated yield, together with a 15% yield of 1-[(tert-butoxy)methylphenylsilyl]-4-(methylphenylsilyl)butane (3). The photolysis of trans-1,2-dimethyl-1,2-diphenyl-1,2-disilacyclohexane (1b) with tert-butyl alcohol under the same conditions gave stereospecifically trans-2,3-benzo-1-tert-butoxy-1,4-dimethyl-4-phenyl-1,4-disilacyclooct-2-ene (2b) in 41% isolated yield, along with a 12% yield of 3. Similar photolysis of 1a and 1b with tert-butyl alcohol-d1 produced 2a and 2b, respectively, in addition to 1-[(tert-butoxy)(monodeuteriomethyl)(phenyl)silyl]-4-(methylphenylsilyl)butane. When 1a and 1b were photolyzed with acetone in a hexane solution, cis- and trans-2,3-benzo-1-isopropoxy-1,4-dimethyl-4-phenyl-1,4-disilacyclooct-2-ene (4a and 4b) were obtained in 25% and 23% isolated yield. In both photolyses, 1-(hydroxymethylphenylsilyl)-4-(methylphenylsilyl)butane (5) was also isolated in 4% and 5% yield, respectively. The photolysis of 1a with acetone-d6 under the same conditions gave 4a-d6 and 5-d1 in 18% and 4% yields.  相似文献   

3.
4,5-Dihydrofuran-3-carbonitriles 3a-i were obtained through oxidative cyclizations of 3-oxo-3-phenylpropanenitrile 1a, 3-oxo-3-thien-2-ylpropanenitrile 1b, 3-(2-furyl)-3-oxopropanenitirle 1c, 3-(1-benzofuran-2-yl)-3-oxopropanenitrile 1d, and 4,4-dimethyl-3-oxopropanenitrile 1e mediated manganese(III) acetate with 1,1-diphenyl-1-butene 2a and 1,2-diphenyl-1-pentene 2b. The treatments of these 3-oxopropanenitriles with 2-thienyl substituted alkenes such as 2-[(E)-2-phenylvinyl]thiophene 2c, 2-[(E)-1-methyl-2-phenylvinyl]thiophene 2d, and 2-(1-phenylvinyl)thiophene 2e formed 5-(2-thienyl)-4,5-dihydrofuran-3-carbonitriles 3j-r in good yields (45-93%). As a result, 2-thienyl substituted alkenes formed products in higher yields than phenyl substituted derivatives.  相似文献   

4.
The syntheses of two chiral bis(phosphite) ligands with tartaric acid-derived backbones: 1 (from dimethyl tartrate) and 2 (from dipyrollidene tartramide), three complexes of 1: cis-Mo(CO)4(1), cis-PtCl2(1), and cis-PdCl2(1) and two complexes of 2: cis-Mo(CO)4(2) and cis-PdCl2(2) are described. Each ligand and complex has been fully characterized by 1H, 13C, and 31P NMR spectroscopy, and the coordination 31P NMR chemical shifts have been compared to those observed for complexes of related ligands. The X-ray crystal structures of each of the metal complexes have also been determined. The X-ray crystal structures indicate that the conformation of the seven-membered chelate ring varies depending on the substituents on the tartrate backbone. However, the conformations of the seven-membered rings do not change when the metal center is changed or when the coordination environment around the metal center is changed.  相似文献   

5.
(E)-(1,2-Difluoro-1,2-ethenediyl)bis[tributylstannane], 3, readily undergoes a Pd(PPh3)4/CuI-catalyzed cross-coupling reaction with iodotrifluoroethene to yield (E)-octafluoro-1,3,5-hexatriene, 4, in high isomeric purity. (1Z,3E,5Z)-(1,2,3,4,5,6-Hexafluoro-1,3,5-hexenetriyl)bis[tributylstannane], 7, was sequentially prepared from (1Z,3E,5Z)-(1,2,3,4,5,6-hexafluoro-1,3,5-hexenetriyl)bis[triethylsilane], 5, which was prepared via a Pd(PPh3)4/CuI-catalyzed cross-coupling reaction of 3 with (E)-1,2-difluoro-1-iodo-2-triethylsilylethene, 6. Pd(PPh3)4/CuI cross-coupling of 7 with iodotrifluoroethene gave (3E,5E,7E)-dodecafluoro-1,3,5,7,9-decapentaene, 8.  相似文献   

6.
Thermolysis of Ni(OTf)2 in 2-phenyl-pyridine or 2-tolyl-pyridine afforded the cationic chelate derivatives, [bis(2-aryl-pyridine)Ni{(2-aryl-κC2)pyridine-κN}]OTf (aryl = phenyl, 1a; tolyl, 1b). Addition of KBr to 1a and LiBr to 1b provided the bromides, (2-aryl-pyridine)BrNi{(2-aryl-κC2)pyridine-κN} (aryl = phenyl, 2a; tolyl, 2b). When subjected to KOtBu in Et2O, the bromides generated the entitled bis-cyclometalated compounds, Ni{(2-aryl-κC2)pyridine-κN}2 (aryl = phenyl, 3a; tolyl, 3b). These compounds insert diphenylacetylene into one cyclometalate arm to produce [(2-aryl-κC2)pyridine-κN]Ni[2-(2-(1,2-diphenylethenyl-κC2)aryl)pyridine-κN] (aryl = phenyl, 4a; p-tolyl, 4b). X-ray crystallographic studies were conducted on 1a, 2a, 3a and 4a, and a brief DFT study of 3a confirmed its low spin configuration and rippled geometry.  相似文献   

7.
Acetic acid-catalyzed condensation of 2-amino-3-(1-imino-2,2,2-trifluoroethyl)-1,1,4,5,6,7-hexafluoroindene (1b) with acetone and cyclopentanone gives 5,6,7,8,9,9-hexafluoro-2,2-dimethyl-4-trifluoromethyl-2,3-dihydro-1,3-diazafluorene (2a) and 5,6,7,8,9,9-hexafluoro-4-trifluoromethyl-2,3-dihydro-1,3-diazafluorene-2-spiro-1′-cyclopentane (3a) together with small amounts of 5,6,7,8,9,9-hexafluoro-2,2-dimethyl-4-trifluoromethyl-1,2-dihydro-1,3-diazafluorene (2b) and 5,6,7,8,9,9-hexafluoro-4-trifluoromethyl-1,2-dihydro-1,3-diazafluorene-2-spiro-1′-cyclopentane (3b), respectively. When acted upon by (CH3)2SO4 compounds 2, 3 were converted into corresponding fluorine-containing 1-methyl-1,2-dihydro-1,3-diazafluorenes 6, 7. 4a-Chloro-5,6,7,8,9,9-hexafluoro-2,2-dimethyl-4-trifluoromethyl-2,4a-dihydro-1,3-diazafluorene (8) has been synthesized by the interaction of compound 2 with SOCl2. Solution of compound 2 as well as 8 in CF3SO3H-CD2Cl2 generated 5,6,7,8,9,9-hexafluoro-2,2-dimethyl-4-trifluoromethyl-1,2,3,4-tetrahydro-1,3-diazafluorene-4-yl cation (2c). The structures of compounds 2, 3, 6-8 have been determined by single crystal X-ray diffraction.  相似文献   

8.
A novel series of blue emitting silylene-spaced diphenylanthracene derivatives have been synthesized and characterized. The rhodium-catalyzed hydrosilylation of bis[4-(dimethylsilyl)phenyl]anthracene 3-4 yielded stable 9,10-disubstituted (E)-divinylsilylene-diphenylanthracene products 7-10 and salt elimination reaction of bis[4-(chlorodimethylsilyl)phenyl]anthracene 5-6 gave 9,10-disubstituted disilyldiphenylanthracene compounds 11-14. They are fluorescent in the blue region with good quantum efficiencies. The rhodium-catalyzed polyaddition including 2-tert-butyl-9,10-bis[4-(dimethylsilyl)phenyl]anthracene (4) afforded the nonconjugated copolymer 15.  相似文献   

9.
The reaction between the triosmium cluster 1,2-Os3(CO)10(MeCN)2 and the diphosphine pincer ligand 4,6-bis(diphenylphosphinomethyl)-m-xylene (dppx) has been examined and found to yield the pincer-bridged cluster 1,2-Os3(CO)10(dppx) (2) as the major product, in addition to the pincer-bridged cluster 1,2-Os3(CO)10[1-diphenylphosphino-1-{(2,4-dimethyl-5-diphenylphosphinomethyl)phenyl}-propan-2-ol] (3) in trace amounts (<2% yield). Both cluster products have been isolated and their molecular structures determined by crystallographic analyses. The structural highlights of compounds 2 and 3, which represent the first examples of pincer-ligated metal clusters, are discussed. The origin of the functionalized diphosphine ligand in 3 is traced to the ethanol solvent that was used in the recrystallization of the dppx ligand.  相似文献   

10.
The decomposition of 3-oxyphenyl-3-methoxy-4-(2′-spiroadamantane)-1,2-dioxetane (A) and 5-tert-butyl-4,4-dimethyl-1-(3-oxyphenyl)bicyclo[3.2.0]heptane (B) in NaOH/H2O gives light in poor yield, which is several orders of magnitude lower than that in aprotic solvents. To understand the poor chemiluminescence efficiency in NaOH/H2O, we investigated the behaviors of the authentic emitters, methyl 3-oxidobenzoate (C) and 2,2,4,4-tetramethyl-3-oxopentyl 3-oxidobenzoate (D). We found that D was weakly fluorescent though hydrolyzed in NaOH/H2O, and estimated that the singlet-chemiexcitation efficiency ΦS was 6.1 × 10−3 for the decomposition of B in NaOH/H2O. On the other hand, ΦS for A could not be estimated, since C was hydrolyzed too rapidly to observe its fluorescence.  相似文献   

11.
The synthesis, crystal structure, thermal analysis and spectroscopic studies of five zinc(II) complexes of formulae [Zn(Memal)(H2O)]n (1) and [Zn2(L)(Memal)2(H2O)2]n (2-5) [H2Memal = methylmalonic acid, and L = 4,4′-bipyridine (4,4′-bpy) (2), 1,2-bis(4-pyridyl)ethylene (bpe) (3), 1,2-bis(4-pyridyl)ethane (bpa) (4) and 4,4′-azobispyridine (azpy) (5)] are presented here. The crystal structure of 1 is a three-dimensional arrangement of zinc(II) cations interconnected by methylmalonate groups adopting the μ32OO’:κO”:κO”’ coordination mode to afford a rare (10,3)-d utp-network. The structures of the compounds 2-5 are also three-dimensional and they consist of corrugated square layers of methylmalonate-bridged zinc(II) ions which are pillared by bis-monodentate 4,4′-bpy (2), bpe (3), bpa (4) and azpy (5) ligands. The Memal ligand in 2-5 adopts the μ3OO′:κO′′:κO′′′ coordination mode. Each zinc(II) ion in 1-5 is six-coordinated with five (1)/four (2-5) methylmalonate-oxygen atoms, a water molecule (1-5) and a nitrogen atom from a L ligand (2-5) building distorted octahedral environments. The rod-like L co-ligands in 2-5 appear as useful tools to control the interlayer metal-metal separation, which covers the range 8.4311(5) Å (2) – 9.644(3) Å (5). The influence of the co-ligand on the fluorescence properties of this series of compounds has been analyzed and discussed by steady-state and time resolved spectroscopy on all five compounds in the solid state.  相似文献   

12.
A set of isomeric para- and meta-trimethylsilylphenyl ortho-substituted N,N-phenyl α-diimine ligands [(Ar-NC(Me)-(Me)CN-Ar) Ar=2,6-di(4-trimethylsilylphenyl)phenyl (16); Ar=2,6-di(3-trimethylsilylphenyl)phenyl (17)] have been synthesized through a two-step procedure. The palladium-catalysed cross-coupling reaction between 2,6-dibromophenylamine (7) and 4-trimethylsilylphenylboronic acid (8), 3-trimethylsilylphenylboronic acid (9) was used to prepare 4,4-bis(trimethylsilyl)-[1,1;3,1″]terphenyl-2-ylamine (10) and 3,3-bis(trimethylsilyl)-[1,1;3,1″]terphenyl-2-ylamine (11). The di-1-adamantylphosphine oxide Ad2P(O)H (13) and di-tert-butyl-trimethylsilylanylmethylphosphine tert-Bu2P-CH2-SiMe3 (14) were used for the first time as ligands for the Suzuki coupling. The condensation of 2,2,3,3-tetramethoxybutane (15) with anilines 10 and 11 afforded α-diimines 16 and 17. The reaction of π-allylnickel chloride dimer (18), α-diimines (16), (17) and sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (BAF) (19) or silver hexafluoroantimonate (20) led to two sets of isomeric complexes [η3-allyl(Ar-NC(Me)-(Me)CN-Ar)Ni]+ X, [Ar=2,6-di(4-trimethylsilylphenyl)phenyl, X=BAF (3), X=SbF6 (4); Ar=2,6-di(3-trimethylsilylphenyl)phenyl, X=BAF (5), X=SbF6 (6)]. The steric repulsion of closely positioned trimethylsilyl groups in 4 caused the distortion of the nickel square planar coordination by 17.6° according to X-ray analysis.  相似文献   

13.
The syntheses of [bis(3,5-di-tert-butyl-2-hydroxy-2-phenyl)amine]diphenyltin (1) and [bis(3,5-di-tert-butyl-2-hydroxy-2-phenyl)amine]dichloro-phenyl-stannate (2) by template reactions using 3,5-di-tert-butylcatechol, aqueous ammonia and SnPh2Cl2 are reported. We also report the syntheses of compounds 2, [bis(3,5-di-tert-butyl-2-hydroxy-2-phenyl)amine]trichloro-stannate (4), [bis(3,5-di-tert-butyl-2-hydroxy-2-phenyl)methylamine]chloro-methyltin (5), and [bis(3,5-di-tert-butyl-2-hydroxy-2-phenyl)-n-butylamine]n-butyl-chlorotin (6) and [bis(3,5-di-tert-butyl-2-hydroxy-2-phenyl)amine]n-butyl-dichloro-stannate (7), performed by transmetallation reactions of the octahedral zinc coordination compound Zn[3,5-di-tert-butyl-1,2-quinone-(3,5-di-tert-butyl-2-hydroxy-1-phenyl)imine]2 (3) with SnPhCl3 or SnPh2Cl2, SnCl4, SnMe2Cl2, Sn(nBu)2Cl2 and Sn(nBu)Cl3, respectively. The X-ray diffraction structures of compounds 1, 2, 4 and 6 are reported. The transmetallation reactions with Sn(alkyl)2Cl2 afforded pentacoordinated tin compounds, where an alkyl group migrated from tin to nitrogen, while similar reactions with Sn-Ph compounds did not present any phenyl group migration.  相似文献   

14.
Although reaction of guaiazulene (1a) with 1,2-diphenyl-1,2-ethanediol (2a) in methanol in the presence of hydrochloric acid at 60 °C for 3 h under aerobic conditions gives no product, reaction of 1a with 1,2-bis(4-methoxyphenyl)-1,2-ethanediol (2b) under the same reaction conditions as 2a gives a new ethylene derivative, 2-(3-guaiazulenyl)-1,1-bis(4-methoxyphenyl)ethylene (3), in 97% yield. Similarly, reaction of methyl azulene-1-carboxylate (1b) with 2b under the same reaction conditions as 1a gives no product; however, reactions of 1-chloroazulene (1c) and the parent azulene (1d) with 2b under the same reaction conditions as 1a give 2-[3-(1-chloroazulenyl)]-1,1-bis(4-methoxyphenyl)ethylene (4) (81% yield) and 2-azulenyl-1,1-bis(4-methoxyphenyl)ethylene (5) (15% yield), respectively. Along with the above reactions, reactions of 1a with 1,2-bis(4-hydroxyphenyl)-1,2-ethanediol (2c) and 1-[4-(dimethylamino)phenyl]-2-phenyl-1,2-ethanediol (2d) under the same reaction conditions as 2b give 2-(3-guaiazulenyl)-1,1-bis(4-hydroxyphenyl)ethylene (6) (73% yield) and (Z)-2-[4-(dimethylamino)phenyl]-1-(3-guaiazulenyl)-1-phenylethylene (7) (17% yield), respectively. Comparative studies of the above reaction products and their yields, crystal structures, spectroscopic and electrochemical properties are reported and, further, a plausible reaction pathway for the formation of the products 3-7 is described.  相似文献   

15.
The autoxidation of a mixture of 1,2-disubstituted pyrazolidine-3,5-diones 1 and alkenes 2 in the presence of a catalytic amount of manganese(III) acetate dihydrate in air gave 4,4-bis(2-hydroperoxyalkyl)pyrazolidine-3,5-diones 3 in 75-96% yields. The structure of the bis(2-hydroperoxyethyl)pyrazolidine-3,5-dione 3 (R1=R2=Ph, R3=R4=4-FC6H4) has been corroborated by an X-ray single crystallographic analysis. On the other hand, the manganese(III) acetate oxidation of a mixture of 1 (R1=R2=Ph) and 2 (R3=R4=Ph) at elevated temperature gave 4,4-bis(2,2-diphenylethenyl)-1,2-diphenylpyrazolidine-3,5-dione (4) in good yield.  相似文献   

16.
Amination of 1-bromo-2-methylpyridine with trans-1,2-diaminocyclohexane gives the corresponding bis(aminopyridine) H2L1. Conversion of the same diamine to the N,N′-bis(amino-4,4-dimethylthiazoline) H2L2 is also completed in three steps. The analogous aminooxazoline is however inaccessible, although the aminocyclohexane analogue is prepared readily. The proligand H2L1 forms bis(aminopyridinato) alkyl complexes of the type [ZrL1R2] (R = CH2Ph, CH2But). The molecular structure of the neopentyl complex shows that the chiral backbone leads to a puckering of the N4Zr coordination sphere, which contrasts with the related cyclohexyl-bridged Schiff-base complexes which are essentially planar. [ZrL2(CH2But)2] - the first aminothiazolinato complex - is formed similarly. A comparison of the structures of [ZrL1(CH2But)2] and [ZrL2(CH2But)2] indicates that the latter has a fully delocalised N-C-N system, rather similar to a bis(amidinate). Reaction of H2L2 with [Ti(NMe2)4] gives [TiL2(NMe2)2] which appears to be C2-symmetric like the above complexes according to NMR spectra, but has one uncoordinated thiazoline unit in the solid state. This is a result of increased ring strain at the smaller titanium metal centre.  相似文献   

17.
A new series of titanium(IV) and zirconium(IV) amides have been prepared from the reaction between M(NMe2)4 (M = Ti, Zr) and C2-symmetric ligands, (R)-2,2′-bis(pyridin-2-ylmethylamino)-6,6′-dimethyl-1,1′-biphenyl (2H2), (R)-2,2′-bis(pyrrol-2-ylmethyleneamino)-6,6′-dimethyl-1,1′-biphenyl (3H2), (R)-2,2′-bis(diphenylphosphinoylamino)-6,6′-dimethyl-1,1′-biphenyl (4H2), (R)-2,2′-bis(methanesulphonylamino)-6,6′-dimethyl-1,1′-biphenyl (5H2), (R)-2,2′-bis(p-toluenesulphonylamino)-6,6′-dimethyl-1,1′-biphenyl (6H2), and C1-symmetric ligands, (R)-2-(diphenylthiophosphoramino)-2′-(dimethylamino)-6,6′-dimethyl-1,1′-biphenyl (7H) and (R)-2-(pyridin-2-ylamino)-2′-(dimethylamino)-6,6′-dimethyl-1,1′-biphenyl (8H), which are derived from (R)-2,2′-diamino-6,6′-dimethyl-1,1′-biphenyl. Treatment of M(NMe2)4 with 1 equiv. of N4-ligand, 2H2 or 3H2 gives, after recrystallization from an n-hexane solution, the chiral zirconium amides (2)Zr(NMe2)2 (9), (3)Zr(NMe2)2 (11), and titanium amide (3)Ti(NMe2)2 (10), respectively, in good yields. Reaction of Zr(NMe2)4 with 1 equiv of diphenylphosphoramide 4H2 affords the chiral zirconium amide (4)Zr(NMe2)2 (12) in 85% yield. Under similar reaction conditions, treatment of Ti(NMe2)4 with 1 equiv. of sulphonylamide ligand, 5H2 or 6H2 gives, after recrystallization from a toluene solution, the chiral titanium amides (5)Ti(NMe2)2·0.5C7H8 (13·0.5C7H8) and (6)Ti(NMe2)2 (15), respectively, in good yields, while reaction of Zr(NMe2)4 with 1 equiv. of 5H2 or 6H2 gives the bis-ligated complexes, (5)2Zr (14) and (6)2Zr (16). Treatment of M(NMe2)4 with 2 equiv. of diphenylthiophosphoramide ligand 7H or N3-ligand 8H gives, after recrystallization from a benzene solution, the bis-ligated chiral zirconium amides (7)2Zr(NMe2)2 (17) and (8)2Zr(NMe2)2 (19), and bis-ligated chiral titanium amide (8)2Ti(NMe2)2 (18), respectively, in good yields. All new compounds have been characterized by various spectroscopic techniques, and elemental analyses. The solid-state structures of complexes 10, 12, 13, and 17-19 have further been confirmed by X-ray diffraction analyses. The zirconium amides are active catalysts for the asymmetric hydroamination/cyclization of aminoalkenes, affording cyclic amines in good to excellent yields with moderate ee values, while the titanium amides are not.  相似文献   

18.
Two diethyl phosphonated phosphine ligands of formula Ph2P(CH2)3PO3Et2 (ligand L) and Ph2P(4-C6H4PO3Et2) (ligand L′) were used to prepare different complexes of platinum(II) (1, cis-PtCl2L2; 2, trans-PtCl2L2·H2O; 3A and 3B, cis- and trans-PtCl2L′2) and palladium(II) (4, [PdCl2L]2; 5, trans-PdCl2L2·H2O; 6, trans-PdCl2L′2·CH2Cl2). The single-crystal X-ray structure analyses of complexes 1, 2, 4-6 indicate that complexation involved only the phosphine end, whereas the strong polarization of the PO bond was highlighted by the formation of hydrogen bonds with a water molecule in 2 and 5, and with a dichloromethane molecule in 6, with an exceptionally short CH?O hydrogen bond length (C?O separation 3.094(3) Å).  相似文献   

19.
20.
Lithium 1,2-bis(trimethylsilyl)hydrazine (1a) reacts with Me3SnCl, Et3SnBr and Bu3SnCl to form bis(trimethylsilyl)(trimethylstannyl)hydrazine (2a), (triethylstannyl)bis(trimethyl silyl)hydrazine (2b) and (tributylstannyl)bis(trimethylsilyl)hydrazine (2c), respectively. Compounds 2a and 2b undergo disproportionation at room temperature to form bis(trimethylsilyl)bis(trimethylstannyl)hydrazine (3a) and bis(triethylstannyl)bis(trimethylsilyl)hydrazine (3b). In contrast, 2c is highly stable and can withstand such a reaction up to 150 °C. The monostannylated products, 2a, 2b and 2c do not get lithiated at NH and instead undergo transmetallation in their reaction with RLi or Li to form lithiumbis(trimethylsilyl)hydrazine (1a).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号