首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The reactions of [RuH(CO)Cl(PPh3)3] with N,N-bis(salicylidine)-hydrazine (H2bsh) and N,N-bis(salicylidine)-p-phenylene diammine (H2bsp) in presence of KOH in methanol led in the formation of neutral mononuclear complexes with the formulations [RuH(CO)(PPh3)2(L)] (LHbsh or Hbsp). These present the first examples where the ligands H2bsh or H2bsp provide only two of its available donor sites for interaction with the metal centre. The complexes have been characterized by elemental analyses, FAB-MS, IR, 1H, 13C, 31P NMR and electronic spectral studies. Molecular structure of the representative complex [RuH(CO)(PPh3)2(Hbsh)] have been determined by single crystal X-ray analysis.  相似文献   

2.
The hepta- and octa-dentate ligands N,N′-bis(2-aminobenzyl)-1,10-diaza-15-crown-5 (L1) and N,N′-bis(2-aminobenzyl)-1,10-diaza-18-crown-6 (L2), respectively, form stable mononuclear Mn(II) complexes. Spectrophotometric titrations performed in acetonitrile solution indicate the formation of mononuclear Mn(II) complexes with both ligands, and no evidence for the formation of binuclear complexes was obtained. The optimal architecture of L1 allows it to impose the less usual pentagonal bipyramidal geometry on the Mn(II) guest, and the X-ray crystal structure of [Mn(L1)](ClO4)2 shows that the Mn(II) ion is deeply buried in the receptor cavity, coordinated to the seven available donor atoms, with the perchlorate anions remaining outside the metal coordination sphere. In spite of its higher denticity, the receptor L2 is unable to form the expected binuclear complexes. The X-ray crystal structure of [Mn(L2)](NO3)2 consists of the [Mn(L2)]2+ cation and nitrate anions involved in hydrogen-bonding interactions with the aniline groups. In [Mn(L2)]2+ the metal ion is also placed in the crown hole, but as a result of the large size of the macrocyclic cavity only six of the eight available donor atoms of the receptor form part of the Mn(II) coordination sphere, with the Mn(II) ion found in a distorted octahedral coordination environment.  相似文献   

3.
Among the bisphosphine ligands, we have previously developed Cn-TunePhos (n = 1-6) as a family of ligands with tunable bite angles. The increase in spacer -CH2- groups in this family of ligands causes changes in ligand dihedral angle, which in turn causes P-Pd-P bite angle variation. Pd-catalyzed asymmetric alkylations and cycloadditions have been tested with Cn-TunePhos ligands. This study aims at a possible correlation between ligand bite angles with enantioselectivity of the Pd-catalyzed asymmetric products.  相似文献   

4.
μ-1,3-Acetamide or acetate bridged, symmetric and asymmetric dicopper(II) complexes viz [Cu2(P1-O)(NHAc)](ClO4)2 (1), [Cu2(P2-O)(OAc)](ClO4)2 (2) and [Cu2(P2′-O)(OAc)(H2O)](ClO4)2 (3) were synthesized by employing classic dinucleating ligands; P1-OH, P2-OH (symmetric), and P2′-OH (asymmetric) having trivial differences in their ligand frame work. Solid state structures of these complexes were determined by X-ray crystallography. In solution, they were also characterized by various spectroscopic techniques, which includes ESI-MS, FT-IR, optical, solution magnetic moment, paramagnetic 1H NMR and EPR. The solution magnetic moment of these complexes at room temperature suggests a weak magnetic interaction between the two Cu(II) centers.  相似文献   

5.
Phosphine ruthenate complexes containing the non-innocent ligands 4-chloro-1,2-phenylenediamine (opda-Cl) and 3,3′,4,4′-tetraamminebiphenyl (diopda) were synthesized and characterized by means of X-ray diffraction, electrochemistry, 31P{1H} NMR and electronic spectroscopies. Crystals of cis-[RuCl2(dppb)(bqdi-Cl)] complex were isolated as a mixture of two conformational isomers due to different positions of the chlorine atoms of the o-phenylene ligand in relation to the P1 atom of the phosphine moiety.  相似文献   

6.
The complexes [Rh(CO)(PPh3){Ph2PNP(O)Ph2-P,O}] (3), [Rh(CO)2{Ph2P(Se)NP(Se)Ph2-Se,Se′}] (5), and [Rh(CO)(PPh3){Ph2P(Se)NP(Se)Ph2-Se,Se′}] (6), were synthesised by stepwise reactions of CO and PPh3 with [Rh(cod){Ph2PNP(O)Ph2-P,O}] (2) and [Rh(cod){Ph2P(Se)NP(Se)Ph2-Se,Se′}] (4), respectively. The complexes 3, 5 and 6 have been studied by IR, as well as 1H and 31P NMR spectroscopy. The ν(CO) bands of complexes 3 and 6 appear at approximately 1960 cm−1, indicating high electron density at the RhI centre. The structure of complexes 3 and 6 has been determined by X-ray crystallography, and the 31P NMR chemical shifts have been resolved via low temperature NMR experiments. Both complexes exhibit square planar geometry around the metal centre, with the five-membered ring of complex 3 being almost planar, and the six-membered ring of complex 6 adopting a slightly distorted boat conformation. The C-O bond of the carbonyl ligand is relatively weak in both complexes, due to strong π-back donation from the electron rich RhI centre. The catalytic activity of the complexes 2, 3 and 6 in the hydroformylation of styrene has been investigated. Complexes 2 and 3 showed satisfactory catalytic properties, whereas complex 6 had effectively no catalytic activity.  相似文献   

7.
Heteroleptic nickel pentacoordinate complexes with the macrocyclic ligands 2,4,4-trimethyl-1,5,9-triazacyclododec-1-ene (Me3-mcN3) or its 9-methyl derivative (Me4-mcN3), as ancillary ligands, and O,O′-(diphenylphosphineoxide)amidate ligands, [RC(O)NP(O)Ph2]¯ (R = C6H6 (1), C5H4N (2), C4H3S (3)), have been prepared as well as related acetylacetonate derivatives. The complexes have been studied by spectroscopic methods (IR, UV-Vis and 1H NMR). In acetone solution, the complexes exhibit isotropically shifted 1H NMR resonances. The full assignment of these resonances has been achieved using one- and two-dimensional 1H NMR techniques. The single-crystal structures of {(Me4-mcN3)Ni[OP(Ph2)NC(Tf)O]}[PF6] (9) and {(Me3-mcN3)Ni(acac)}[PF6] (10) have been established by X-ray diffraction.  相似文献   

8.
The tripodal N,N,O ligands 3,3-bis(3,5-dimethylpyrazol-1-yl)propionic acid (Hbdmpzp) (1) and 3,3-bis(pyrazol-1-yl)propionic acid (Hbpzp) (2) form the “missing link” between the well-known bis(pyrazol-1-yl)acetic acids and related ligands with a longer “carboxylate arm”. To illustrate the reactivity of this ligand, manganese and rhenium complexes bearing the ligand bdmpzp are reported. The complexes are compared to related compounds bearing other tripod ligands such as bis(3,5-dimethylpyrazol-1-yl)acetate (bdmpza) and 3,3-bis(1-methylimidazol-2-yl)propionate (bmip). Spectroscopic and structural data are used as a basis for comparison, as well as DFT calculations. Both ligands 1 and 2 and the complexes fac-[Mn(bdmpzp)(CO)3] (3) and fac-[Re(bdmpzp)(CO)3] (4) were characterised by X-ray crystallography.  相似文献   

9.
A series of conformationally rigid half-sandwich organoruthenium(II) complexes with the general formula [(η6-p-cymene)RuCl(L)] (where L = mono anionic 2-(naphthylazo)phenolato ligands) have been synthesized from the reaction of [{(η6-p-cymene)RuCl}2(μ-Cl)2] with a set of 2-(naphthylazo)phenolato O,N-donor ligands. All the ruthenium complexes were fully characterized by FT-IR, 1H NMR, and UV–Vis spectroscopy as well as elemental analysis. In dichloromethane solution all the metal complexes exhibits characteristic metal-to-ligand charge transfer bands (MLCT) and emission bands in the visible region. The molecular structure of one of the complexes [Ru(η6-p-cymene)(Cl)(L2)] (2) was determined by X-ray crystallography. Electrochemical data of all the ruthenium complexes show a two metal centered voltammetric responses with respect to Ag/AgCl at scan rate 100 mV s−1. Further, the complex (2) efficiently catalyzes the oxidation of a wide range of alcohols to their corresponding carbonyl compounds in the presence of N-methylmorpholine-N-oxide (NMO) up to 97%.  相似文献   

10.
Rhodium complexes bearing N-heterocyclic carbene (NHC) ligands were prepared from bis(η4-1,5-cyclooctadiene) dichlorodirhodium and 1-alkyl-3-methylimidazolium-2-carboxylate, and the catalytic properties of rhodium complexes prepared in the hydrosilylation of alkenes in ionic liquid media were investigated. It was found that both the catalytic activity and selectivity of the rhodium complexes bearing NHC ligands were influenced by the attached substituents of the imidazolium cation. Additionally, rhodium complexes bearing NHC ligands in ionic liquid BMimPF6 could be reused without noticeable loss of catalytic activity and selectivity.  相似文献   

11.
Reactions of ω-diphenylphosphinofunctionalized alkyl phenyl sulfides Ph2P(CH2)nSPh (n = 1, 1a; 2, 2a; 3, 3a), sulfoxides Ph2P(CH2)nS(O)Ph (n = 1, 1b; 2, 2b; 3, 3b) and sulfones Ph2P(CH2)nS(O)2Ph (n = 1, 1c; 2, 2c; 3, 3c) with dinuclear chlorido bridged rhodium(I) complexes [(RhL2)2(μ-Cl)2] (L2 = cycloocta-1.5-diene, cod, 4; bis(diphenylphosphino)ethane, dppe, 5) afforded mononuclear Rh(I) complexes of the type [RhCl{Ph2P(CH2)nS(O)xPh-κP}(cod)]1 (n/x = 1/0, 6a; 1/1, 6b; 1/2, 6c; 2/0, 8a; 2/1, 8b; 2/2, 8c; 3/0, 10a; 3/1, 10b; 3/2, 10c) and [RhCl{Ph2P(CH2)nS(O)xPh-κP}(dppe)] (n/x = 1/0, 7a; 1/1, 7b; 1/2, 7c; 2/0, 9a; 2/1, 9b; 2/2, 9c; 3/0, 11a; 3/1, 11b; 3/2, 11c) having the P^S(O)x ligands κP coordinated. Addition of Ag[BF4] to complexes 6-11 in CH2Cl2 led with precipitation of AgCl to cationic rhodium complexes of the type [Rh{Ph2P(CH2)nS(O)xPh-κPS/O}L2][BF4] having bound the P^S(O)x ligands bidentately in a κPS (13a-18a, 15b-18b) or a κPO (13b, 14b, 13c-18c) coordination mode. Unexpectedly, the addition of Ag[BF4] to 6a in THF afforded the trinuclear cationic rhodium(I) complex [Rh3(μ-Cl)(μ-Ph2PCH2SPh-κPS)4][BF4]2·4THF (12·4THF) with a four-membered Rh3Cl ring as basic framework. Addition of sodium bis(trimethylsilyl)amide to complexes 6-11 led to a selective deprotonation of the carbon atom neighbored to the S(O)x group (α-C) yielding three different types of organorhodium complexes: a) Organorhodium intramolecular coordination compounds of the type [Rh{CH{S(O)xPh}CH2CH2PPh2CP}L2] (22a-c, 23a-c), b) zwitterionic complexes [Rh{Ph2PCHS(O)xPh-κPS/O}L2] having κPS (21a, 21b) and κPO (20b/c, 21c) coordinated anionic [Ph2PCHS(O)xPh] ligands, and c) the dinuclear rhodium(I) complex [{Rh{μ-CH(SPh)PPh2CP}(cod)}2] (19). All complexes were fully characterized spectroscopically and complexes 15b, 15c, 12·4THF and 19·THF additionally by X-ray diffraction analysis. DFT calculations of zwitterionic complexes gave insight into the coordination mode of the [Ph2PCHS(O)Ph] ligand (κPS versus κPO).  相似文献   

12.
Xin-Yan Wang  Chuan Sun  Zhi-Guo Zhang 《Tetrahedron》2004,60(48):10993-10998
In the presence of 5.0 mol% chiral tungsten(VI) and molybdenum(VI) complexes, the catalytic asymmetric epoxidation of cis-1-propenylphosphonic acid (CPPA) with 30% aqueous H2O2 affording (1R,2S)-(−)-(1, 2)-epoxypropyl phosphonic acid (fosfomycin) was first described. The enantioselectivities of the tungsten and molybdenum catalysts depend strongly on the ligands, reaction temperature and solvent. In CH2Cl2 at 0 °C for 72 h, complex MoO2[(+)-campy]2 catalyzed the asymmetric epoxidation in a 100% conversion of CPPA with the highest 80% ee. The mechanism of the present epoxidation could be described as direct oxygen transfer occurred on the interface of the biphasic H2O-nonprotic system.  相似文献   

13.
The use of NMP (N-methylpyrrolidone) as a cosolvent has been shown to improve the yield of iron-catalyzed cross-coupling reactions, but surprisingly there are no iron complexes of NMP in the literature. This paper reports two novel NMP complexes of iron(II): Fe3Cl6(NMP)8 and LtBuFe(NMP)Cl (LtBu = bulky β-diketiminate ligand). The X-ray crystal structure of Fe3Cl6(NMP)8 shows an octahedral cation and two tetrahedral FeCl3(NMP) anions. 1H NMR spectra show that the NMP ligands are labile, exchanging rapidly on the NMR time scale. The β-diketiminate complex has a trigonal pyramidal geometry with the NMP in an axial position. The use of NMP improves the yield of the catalytic cross-coupling of methyl 4-chlorobenzoate and 1-hexylmagnesium bromide using these and other iron complexes as precatalysts.  相似文献   

14.
Co(II) complexes with 4,6-di(tert-butyl)-2-aminophenol (HLI) and 2-anilino-4,6-di(tert-butyl)phenol (HLII) have been synthesized and characterized by means of physico-chemical methods. The compounds HLI and HLII coordinate in their singly deprotonated forms and behave as bidentate O,N-coordinated ligands; their low-spin Co(II) complexes are characterized by CoN2O2 coordination modes and square planar geometry. Both the free ligands and their Co(II) and Cu(II) complexes (we have produced and characterized the latter before) exhibit a pronounced antifungal activity against Aspergillus niger, Fusarium spp., Mucor spp., Penicillium lividum, Botrytis cinerea, Alternaria alternata, Sclerotinia sclerotiorum, Monilia spp., which in a number of cases is comparable with that of Nystatin and Terbinafine or even higher. The reducing properties of the ligands and their metal(II) complexes, as well as their antifungal activities, were found to decrease in the order: Cu(LI)2 > Cu(LII)2 ? Co(LI)2 > Co(LII)2 > HLI > HLII.  相似文献   

15.
The synthesis and physico-chemical characterization of Fe(II) and Mn(II) complexes of 4,6-di-tert-butyl-3[(2-hydroxyethyl)sulphanyl]-1,2-dihydroxybenzene (HLI) and 2-amino-4,6-di-tert-butylphenol (HLII) were carried out. Antibacterial activity of the Co(II), Fe(II) and Mn(II) complexes was evaluated in comparison with Cu(II) complexes and three common antibiotics; it was found to follow the order: (1) Сu(LI)2 > Сo(LI)2 > Fe(LI)2 ? Mn(LI)2 > HLI; (2) Сu(LII)2 > Сo(LII)2 > HLII > Fe(LII)2 ? Mn(LII)2; and their reducing ability (determined electrochemically) followed the same order. Spectrophotometric investigation was carried out in order to estimate the rate of the reduction of bovine heart сytochrome c with the ligands and their metal(II) complexes. NADPH:cytochrome P450-reductase was found to increase the rate of сytochrome c reduction with HLI and HLII ligands, while adrenodoxin in couple with NAD(P)H: adrenodoxin reductase had no substantial effect thereon. It was shown that the reduction of сytochrome c with these compounds cannot be related solely to the facility of their oxidation оr ionization.  相似文献   

16.
A series of N-(pyridin-2-yl)picolinamide derivatives was synthesized and characterized. Tetranickel complexes were obtained by stoichiometric reaction of NiBr2 and corresponding ligands, and characterized by elemental and spectroscopic analysis. Moreover, the coordination pattern of complex 3a was confirmed by single-crystal X-ray diffraction. In the structure, two ligands linked two nickel atoms to form a unit, and two units were bridged via μ3-OMe and μ2-Br to form a tetranickel cluster. These Ni(II) complexes were investigated in ethylene oligomerization and found to exhibit remarkable catalytic activities upon activation with MAO. Reaction conditions as well as ligand environment significantly affected the catalytic performance of the nickel complexes; the highest activity could be achieved to be 2.7 × 106 g mol−1 Ni h−1.  相似文献   

17.
The insertion of ethene and propene was investigated in palladium(II) acyl complexes of the type [PdC(O)CH3(PP′)(CH3CN)](OTf) modified with the Cs-symmetric diphosphines 2-4 and the parent ligand 1, described by C2v-symmetry and taken as a reference.Ethene insertion was investigated for acyl complexes containing the ligands 2 and 3. Two insertion products formed in a ratio of approximately 1:1 for both systems, irrespective of the electronic properties of the ligands.Propene as an α-olefin can insert according to a 1,2- or 2,1-insertion mode into a palladium acyl bond, arising regioselectivity issues. Moreover, due to the Cs-symmetry of the ligands, two stereoisomers can result upon insertion, as the alkyl group of the formed five-membered metallacycle can be cis or trans to each non-equivalent moiety. Propene insertion was indeed neither stereo- nor regioselective in the cases of 3 and 4, in which the products arising from both 1,2- and 2,1-insertion were observed. 2 displayed total control of stereo- and regioselectivity, with the formation of one primary insertion product. Similar regioselectivity was observed for the reference ligand 1. The regioisomeric distribution was different from equimolar for propene insertion, where the ratio of the products might be controlled by a combination of steric and electronic factors.  相似文献   

18.
The reaction of allylic compounds with alkyl Grignard reagents in the presence of a catalytic amount of copper N-heterocyclic carbene (NHC) complexes proceeded predominantly in an SN2′ reaction pathway to give γ-substituted product in excellent yield. The method was applied to asymmetric reaction by using optically active NHC ligands.  相似文献   

19.
The use of succinamic acid (H2sucm) in CuII/N,N′,N″-donor [2,2′:6′,2″-terpyridine (terpy), 2,6-bis(3,5-dimethylpyrazol-1-yl)pyridine (dmbppy)] reaction mixtures yielded compounds [Cu(Hsucm)(terpy)]n(ClO4)n (1), [Cu(Hsucm)(terpy)(MeOH)](ClO4) (2), [Cu2(Hsucm)2(terpy)2](ClO4)2 (3), [Cu(ClO4)2(terpy)(MeOH)] (4), [Cu(Hsucm)(dmbppy)]n(NO3)n·3nH2O (5.3nH2O), and [CuCl2(dmbppy)]·H2O (6·H2O). The succinamate(−1) ligand exists in four different coordination modes in the structures of 13 and 5, i.e., the μ2OO′:κO″ in 1 and 5 which involves asymmetric chelating coordination of the carboxylato group and ligation of the amide O-atom leading to 1D coordination polymers, the μ22OO′ in 3 which involves asymmetric chelating and bridging coordination of the carboxylato group, and the asymmetric chelating mode in 2. The primary amide group, either coordinated in 1 and 5, or uncoordinated in 2 and 3, participate in hydrogen bonding interactions, leading to interesting crystal structures. Characteristic IR bands of the complexes are discussed in terms of the known structures and the coordination modes of the Hsucm ligands. The thermal decomposition of complex 5·3nH2O was monitored by TG/DTG and DTA measurements.  相似文献   

20.
Three monocationic rhenium(I) complexes of the type [Re(CO)3(L)]Br, containing the bis-imidazole tridentate ligands bis-(2-(1-methylimidazolyl)methyl)amine (L1), bis-(2-(1-methylimidazolyl)methyl)aminoethanol (L2) and bis-(2-(benzimidazolyl)ethyl)sulfide (L3), were prepared and characterized by 1H NMR and IR spectroscopy. The complex salt [Re(CO)3(L2)]Br (2) was also characterized by X-ray crystallography. The structure consists of discrete monocationic monomers with a fac-[Re(CO)3]+ coordination unit, and the remaining three sites are occupied by one amine and two imidazolyl nitrogen donor atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号