首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 271 毫秒
1.
Inductively coupled plasma-atomic emission spectrometry/mass spectrometry (ICP-AES/MS) is a potentially powerful tool in chemical phase analysis of gold in batch mode, especially applicable to the low-grade gold ores with gold content of far below detection limit of the other methods, but it has not been used in gold phase analysis of gold ores. In this work, three types of typical gold deposits (altered rock type, quartz vein type, and microscopic disseminated type) and national standard reference materials of gold ores were used to establish and validate a method for gold phase analysis of gold ores using ICP-AES/MS. The optimum conditions of phase analysis were determined, including the sample granularity and preparation procedures, separation absorbent, pretreatment procedures of various phases of gold and optimized instrument parameters. Evaluation of the optimized method showed that this method had acceptable precision (RSD: 1.1%–10.6%) and accuracy (relative error, RE: 0.5%–6.3%), and the detection results of gold in ores were comparable with those obtained using the hydroquinone volumetric method-extraction flame atomic absorption spectrometry (VOL-AAS) and graphite furnace atomic absorption spectrometry (GFAAS) methods. The sum content of gold of the 4 phases (free gold, FAu; linked gold, LAu; sulphide-bearing gold, SAu; and other mineral-bearing gold, AAu) conformed to the total gold content and was consistent with the results of rock-mineral identification. The proposed method had a low detection limit (0.30 ng g–1) and wide linear range (5.0 ng mL–1–20.00 μg mL–1). It is a simple, rapid, and efficient method for gold phase analysis in batch form.  相似文献   

2.
The geometrical structure of the Au‐Fe2O3 interfacial perimeter, which is generally considered as the active sites for low‐temperature oxidation of CO, was examined. It was found that the activity of the Au/Fe2O3 catalysts not only depends on the number of the gold atoms at the interfacial perimeter but also strongly depends on the geometrical structure of these gold atoms, which is determined by the size of the gold particle. Aberration‐corrected scanning transmission electron microscopy images unambiguously suggested that the gold particles, transformed from a two‐dimensional flat shape to a well‐faceted truncated octahedron when the size slightly enlarged from 2.2 to 3.5 nm. Such a size‐induced shape evolution altered the chemical bonding environments of the gold atoms at the interfacial perimeters and consequently their catalytic activity. For Au particles with a mean size of 2.2 nm, the interfacial perimeter gold atoms possessed a higher degree of unsaturated coordination environment while for Au particles with a mean size of 3.5 nm the perimeter gold atoms mainly followed the atomic arrangements of Au {111} and {100} facets. Kinetic study, with respect to the reaction rate and the turnover frequency on the interfacial perimeter gold atom, found that the low‐coordinated perimeter gold atoms were intrinsically more active for CO oxidation. 18O isotopic titration and Infrared spectroscopy experiments verified that CO oxidation at room temperature occurred at the Au‐Fe2O3 interfacial perimeter, involving the participation of the lattice oxygen of Fe2O3 for activating O2 and the gold atoms for CO adsorption and activation.  相似文献   

3.
Structure and photoelectrochemical properties of nanostructured SnO2 electrodes deposited electrophoretically with the composite clusters of porphyrin-modified gold nanoparticle with a long, flexible spacer and C60 molecules have been examined to obtain basic information on the development of organic solar cells with a high performance. The photoelectrochemical system with the long, flexible spacer between the porphyrin and the gold nanoparticle in the porphyrin-modified gold nanoparticle exhibited comparable external quantum yield in the UV-vis regions relative to porphyrin-modified gold nanoparticle with a relatively short spacer—C60 composite reference system. These results demonstrate that a suitable spacer to incorporate C60 molecules efficiently between the porphyrins in porphyrin-modified gold nanoparticles is a prerequisite for improving the performance of porphyrin and fullerene-based organic solar cells.  相似文献   

4.
A gold-catalyzed synthesis of polyfluoroalkylated oxazoles from N-propargylamides under visible-light irradiation has been developed. These reactions display excellent compatibility of radicals and gold catalysts under visible-light irradiation. Mechanistic experiments indicate that polyfluoroalkyl iodides play a dual role in enhanced compatibility of radicals and gold catalysts through assisted protodeauration of vinyl gold and reactivated the gold catalyst. In addition, PPh3AuNTf2 not only activates N-propargylamide to generate vinyl gold intermediate, but also greatly promotes homolysis of polyfluoroalkyl iodides under blue light irradiation.  相似文献   

5.
室温下利用鞣酸(TA)既作还原剂又作保护剂,通过绿色还原方法制备了鞣酸包裹的金纳米粒子,并通过紫外可见光谱(UV-Vis)、透射电镜(TEM)、X射线衍射(XRD)、红外光谱(FTIR)等分别进行了表征和分析。结果表明,随着nTA/nHAuCl4比率的增加,紫外可见光谱显示鞣酸稳定的金溶胶最大吸收波长明显增大且吸收带变宽,而最大吸光率逐渐减小。TEM观察证实增加鞣酸用量会导致溶胶体系中花状金纳米聚集体的形成。实验发现,阳离子型表面活性剂十六烷基三甲基溴化铵(CTAB)对鞣酸保护的金纳米聚集体具有强烈的解聚集作用,在剧烈搅拌的条件下CTAB能使金纳米聚集体成功解聚为单分散状态的金纳米粒子,提高体系温度可明显促进CTAB对金纳米聚集体的解聚集作用。  相似文献   

6.
《Analytical letters》2012,45(10):1644-1653
An aqueous dispersion was prepared by attaching positively charged gold nanoparticles to the surface of poly-sodium-p-styrenesulfonate-modified Fe3O4 nanoparticles. The Fe3O4@positively charged gold nanoparticles offer high monodispersion, stability against aggregation, and high magnetization with uniform size. The Fe3O4@positively charged gold nanoparticles were efficient and recyclable catalysts due to the formation of a positively charged gold layer on the surface of Fe3O4 nanoparticles and were stable in aqueous solution for over forty-eight hours and hence may have a broad range of applications.  相似文献   

7.
We report here a green and facile one-step method to fabricate nano-network gold films of low roughness via anodization of gold electrodes in an aqueous solution of l-ascorbic acid (AA) or hydroquinone (H2Q) at the oxidation peak potential. The preparation involves the formation of thin gold oxide layer by anodization of gold and its simultaneous and/or subsequent reduction by AA or H2Q. The as-fabricated nano-network gold films show very strong SERS activity in comparison with the substrates prepared by some other electrochemical roughening methods.  相似文献   

8.
Designing adsorption materials with high adsorption capacities and selectivities is highly desirable for precious metal recovery. Desorption performance is also particularly crucial for subsequent precious metal recovery and adsorbent regeneration. Herein, a metal–organic framework (MOF) material (NH2-UiO-66) with an asymmetric electronic structure of the central zirconium oxygen cluster has an exceptional gold extraction capacity of 2.04 g g−1 under light irradiation. The selectivity of NH2-UiO-66 for gold ions is up to 98.8 % in the presence of interfering ions. Interestingly, the gold ions adsorbed on the surface of NH2-UiO-66 spontaneously reduce in situ, undergo nucleation and growth and finally achieve the phase separation of high-purity gold particles from NH2-UiO-66. The desorption and separation efficiency of gold particles from the adsorbent surface reaches 89 %. Theoretical calculations indicate that -NH2 functions as a dual donor of electrons and protons, and the asymmetric structure of NH2-UiO-66 leads to energetically advantageous multinuclear gold capture and desorption. This adsorption material can greatly facilitate the recovery of gold from wastewater and can easily realize the recycling of the adsorbent.  相似文献   

9.
[(N3S3)Au(AuPMe3)2]2 ( 1 ) and [(N3S3)Au(AuPEt3)2]2 ( 2 ) were prepared by treating AuCl(PMe3) or AuCl(PEt3) with H3N3S3 upon deprotonation by trimethylamine to give respective Au6 supermolecules. Using dppm(AuCl)2 instead of AuCl(PMe3) or AuCl(PEt3) to react with H3N3S3 in a similar reaction condition led to a rare heptanuclear supermolecule of [(N3S3)2Au7(dppm)4]Cl ( 3 ). It is noted that besides short intramolecular gold(I)?gold(I) distances, both compounds 1 and 2 also show intermolecular gold(I)?gold(I) distances of 3.067(1) and 3.241(1) Å, resulting in two‐dimensional and one‐dimensional polymeric gold(I) solid, respectively. In fact, compound 1 shows a similar two‐dimensional polymeric gold(I) solid to that of the reported [(N3S3)Au(AuPPhMe2)2]2 with an intermolecular gold(I)?gold(I) distance of 3.130(2) Å. Significantly, these intermolecular gold(I)?gold(I) distances are well correlated with their cone angles and emission energies. For example, intermolecular gold(I)?gold(I) distances increase in the order of 3.067(1) Å < 3.130(2) Å < 3.241(1) Å for PMe3 (118°), PPhMe2 (122°), and PEt3 (132°), and their emission energies also increase in the order of 542 nm < 530 nm < 504 nm, respectively. This work highlights a very good correlation between intermolecular aurophilic interactions and emission energies for a series of Au6 supermolecules, where the cone angle plays a vital role in the self‐assembly process as well. Finally, the emissions for 1 – 3 are tentatively assigned to the S → Au charge‐transfer transition, whereas they are most probably modified by gold(I)?gold(I) interactions.  相似文献   

10.
Nanometer dimension of citrate-capped gold nanoparticles can be firmly bound with various functionalized polymer-modified glass plate and indium tin oxide (ITO) substrates. Herein we report 3-aminopropyltriethoxysilane, polyvinyl pyridine, polyethylene imines, etc. as binding agents to modify these substrates to stabilize the charged colloidal gold nanoparticles through electrostatic stabilization of gold nanoparticles. When gold nanoparticles pretreated substrate are exposed into the seeding growth solution, the preadsorbed gold nanoparticles grow further and then form nanoislands of gold on glass and ITO substrates. The formation of nanoislands on microscope glass slide and ITO was monitored with UV-visible spectroscopy, cyclic voltammetry, and atomic force microscopy methods. The gold nanoislands and gold nanoparticles pretreated substrates can be used as platform to study the self-assembling behavior of long chain alkanethiols such as C12SH, C16SH, and C18SH. The binding, coverage, and electron transfer characteristics of monolayer assembly on modified gold nanoisland and nanoparticles modified substrates are studied using electrochemical studies. The gold substrates can be prepared by this method, which is simple and reproducible and can be applied to various sensor and electrocatalytic applications.  相似文献   

11.
Enzyme-mimicking artificial nanomaterials often termed nanozymes have broad applications in many fields, including biosensing, pollutant degradation and cancer diagnosis. Herein, we introduce a plasmonic gold nanoparticle-modified Mn3O4 nanozyme (Mn3O4-Au). Visible or near infrared light excitation into the plasmonic absorption band of the surface-bound gold nanoparticles enhances the catalytic oxidation of tetramethylbenzidine (TMB). The mechanism of light-enhanced peroxidase activity is proposed based on the Mn3O4 conduction band mediated hot electron transfer from photoexcited gold nanoparticles to H2O2 which undergoes further oxygen-oxygen bond cleavage to yield hydroxyl radical. The surface decoration of plasmonic gold nanoparticles endows Mn3O4-Au to be a light-regulated nanozyme.  相似文献   

12.
A nephelometric method for the determination of microgram quantities of gold with di-2-thienylketoxime is described. The yellow gold complex, which has the empirical formula Au(C9H6NOS2)2OH, forms a stable suspension when gelatin is added as protective colloid. Many foreign ions do not interfere in 5-fold amounts. If necessary, a preliminary isopropyl ether extraction of gold can be used.  相似文献   

13.
Various Au/Fe2O3 catalysts were prepared by the coprecipitation method, and CO oxidation was studied at ambient temperature and in the presence of water vapor in the feed. It was found that the precipitation method and the calcination temperatures have a significant effect on the catalytic performance of CO oxidation. The stability is related to the particle size of metallic gold and -Fe2O3 and the oxidation state of gold and the iron crystalline phase. The sintering of the gold particles, the reduction of oxide gold to metallic gold, the accumulation of carbonate, and a decrease in the specific surface area were observed during the reaction, which may contribute to the deactivation of Au/Fe2O3 catalysts.  相似文献   

14.
Oxidation of ethylene was carried out over alumina-supported metal oxide catalysts and highly dispersed gold catalysts, respectively, under atmospheric pressure. The ethylene was completely oxidized to produce carbon dioxide and water with both metal oxide and gold catalysts. The activity of gold catalyst prepared by deposition method was much higher than that of supported metal oxide catalysts. Ultra-fine gold particles on Co3O4 were more active than on Al2O3. Fe2O3/Al2O3 and MnO2/Al2O3 catalysts were more active than MoO3/Al2O3 catalyst. The activity of the supported metal oxide catalysts was greatly enhanced by addition of gold particles. It was therefore considered that gold particles promote dissociative adsorption of oxygen and the adsorbed oxygen reacts with adsorbed ethylene on support adjacent to the active site.  相似文献   

15.
The reaction of [Au(C?C?n‐Bu)]n with [Pd(η3‐allyl)Cl(PPh3)] results in a ligand and alkynyl rearrangement, and leads to the heterometallic complex [Pd(η3‐allyl){Au(C?C?n‐Bu)2}]2 ( 3 ) with an unprecedented bridging bisalkynyl–gold ligand coordinated to palladium. This is a formal gold‐to‐gold transmetalation that occurs through reversible alkynyl transmetalations between gold and palladium.  相似文献   

16.
Various reagents such as Cl2, Br2, I2, benzoyl peroxide and CH3I add to the dinuclear gold(I) amidinate complex [Au2(2,6-Me2Ph-form)2] to form oxidative-addition gold(II) metal–metal bonded complexes. The gold–gold distance in the dinuclear complex decreases upon oxidative-addition with halogens from 2.7 to 2.5 Å, similar to observations made with dithiolate and ylide ligands. The sodium salt of the guanidinate Hhpp ligand, Hhpp = 1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidine reacts with (THT)AuCl in THF or CH2Cl2 to form a Au(II) complex, [Au2(hpp)2Cl2], either by solvent oxidation or disproportionation of the Au(I) to Au(II) and the metal. Density functional theory (DFT) and MP2 calculations on [Au2(hpp)2Cl2] find that the highest occupied molecular orbital (HOMO) is predominately hpp and chlorine-based with some Au–Au δ* character. The lowest unoccupied molecular orbital (LUMO) has metal-to-ligand (M–L) and metal-to-metal (M–M) σ* character (approximately 50% hpp/chlorine, and 50% gold). The charge-transfer character of the deeply colored solutions is observed in all the oxidative-addition products of the dinuclear gold(II) nitrogen ligands. This contrasts with the colors of the gold(II) ylide oxidative-addition products which are pale yellow. The colors of the crystalline gold(II) nitrogen complexes are dark orange to brown. This review will focus on the chemistry of gold(II) with nitrogen ligands and compare this with the well reviewed chemistry of gold(II) thiolate and ylide complexes.  相似文献   

17.
The kinetics and mechanism of dissolution of gold in solutions of thiocarbamide (T) in the presence of Fe2(SO4)3 as an oxidizer were studied. The dependences of the rate of dissolution of gold on the concentration ratio between iron(III) and T and pH were determined, and optimum solution compositions for the dissolution of gold were found. The compositions of gold(I) complexes formed in the boundary double layer ([Au{(NH2)2C=S}2]+) and in the bulk ([Au{(NH2)2C=S}3]+) were determined. The diffusion and kinetic components of the overall reaction of gold dissolution in solutions of T in the presence of the oxidizer were obtained by the rotating disc method. The first-order rate constants at 278–333 K, k Au = 3.5 × 10?5?2.73 × 10?4 s?1, and the activation energies at 278–295 K (E a = 13.4 kJ/mol, which is evidence that dissolution value characteristic of kinetically controlled reactions) were determined for the dissolution of gold in solutions of T. The composition of the adsorption sulfide-containing film on the surface of gold was studied by Auger electron spectroscopy. The film, which inhibited gold dissolution, consisted of gold(I) hydrosulfide (AuHS) and sulfide (Au2S). The solubility products of these compounds and their solubilities in aqueous solutions were calculated.  相似文献   

18.
The kinetics and mechanism of the dissolution of metallic gold in solutions of thiocarbamide in the presence of iron(III) were investigated. The dependence of the dissolution rate of gold on the pH of the solution and the ratio of the concentrations of iron(III) and thiocarbamide was determined, and the optimum conditions for the dissolution of gold were determined. The first-order rate constant for the dissolution of gold and the equilibrium constants for the formation of the complex cations Au[SC(NH2)2]+ 2 and the formation of formamide disulfide S2C2(NH)2(NH2)2 were calculated.  相似文献   

19.
The electronic structure and the spectroscopic properties of [Au2(CS3)2]?2, [Au2(pym‐2‐S)2] (pym = pyrimidethiolate), [Au2(dpm)2]+2 (dpm = bis(diphosphino)methane) were studied using density functional theory (DFT) at the B3LYP level. The absorption spectrum of these binuclear gold(I) complexes was calculated by single excitation time‐dependent (TD) method. All complexes showed a 1(5dσ* → 6pσ) transition associated with a metal–metal charge transfer, which is strongly interrelated with the gold–gold distance. Furthermore, we have calculated the frequency of the gold–gold vibration (νAu2) on the above complexes. The values obtained are theoretically in agreement with experimental range. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

20.
Gold icosahedra with an average diameter of about 600 nm were easily prepared by heating an aqueous solution of the amphiphilic block copolymer, poly(ethylene oxide)20-poly(propylene oxide)70-poly(ethylene oxide)20 (Pluronic P123), and hydrogen tetrachloroaurate(III) trihydrate (HAuCl4·3H2O) at 60 °C for 25 min. When sodium chloride (NaCl:HAuCl4 molar ratio=10:1) was added to this aqueous solution, gold nanoplates were produced. The chloride ion was found to be a key component in the formation of the gold nanoplates by facilitating the growth of {111} oriented hexagonal/triangular gold nanoplates, because similar gold nanoplates were produced when LiCl or KCl was added to the aqueous solution instead of NaCl, while gold nanocrystals having irregular shapes were produced when NaBr or NaI was added.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号