首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quantum chemical calculations using gradient-corrected DFT at the BP86/TZ2P+ level were carried out for the metal-dioxime complexes [M{RC(NOH)C(NO)R}2]with M = Ni, Pd, Pt, R = CH3, H, F, Cl, Br, Ph, CF3. The nature of the metal-ligand bond was investigated with an energy decomposition analysis (EDA). The complexes with electron donating substituents R = H, CH3 have the strongest metal-ligand interaction energies ΔEint, as well as the largest bond dissociation energies. The analysis of the bonding situation revealed that the metal ← ligand σ donation is much stronger than the metal → ligand π backdonation. The breakdown of the orbital interactions into the contributions of orbitals with different symmetry indicates that the donation from the in-plane lone-pair donor-orbitals of nitrogen into the dxy AO of the metal provides about one half of the stabilization which comes from ΔEorb. Inspection of the EDA data indicates that the electrostatic term ΔEelstat is more important for the trend of the metal-oxime interactions in [M{RC(NOH)C(NO)R}2] than the orbital term ΔEorb.  相似文献   

2.
We have measured the densities of aqueous solutions of isoleucine, threonine, and equimolal solutions of these two amino acids with HCl and with NaOH at temperatures 278.15  T/K  368.15, at molalities 0.01  m/mol · kg−1  1.0, and at the pressure 0.35 MPa using a vibrating tube densimeter. We have also measured the heat capacities of these solutions at 278.15  T/K  393.15 and at the same m and p using a twin fixed-cell differential temperature-scanning calorimeter. We used the densities to calculate apparent molar volumes Vϕ and the heat capacities to calculate apparent molar heat capacities Cp,ϕ for these solutions. We used our results and values from the literature for Vϕ(T, m) and Cp,ϕ(T, m) for HCl(aq), NaOH(aq), and NaCl(aq) and the molar heat capacity change ΔrCp,m(T, m) for ionization of water to calculate parameters for ΔrCp,m(T, m) for the two proton dissociations from each of the protonated aqueous cationic amino acids. We used Young’s Rule and integrated these results iteratively to account for the effects of equilibrium speciation and chemical relaxation on Vϕ(T, m) and Cp,ϕ(T, m). This procedure gave parameters for Vϕ(T, m) and Cp,ϕ(T, m) for threoninium and isoleucinium chloride and for sodium threoninate and isoleucinate which modeled our observed results within experimental uncertainties. We report values for ΔrCp,m, ΔrHm, pQa, ΔrSm, and ΔrVm for the first and second proton dissociations from protonated aqueous threonine and isoleucine as functions of T and m.  相似文献   

3.
We have measured the densities of aqueous solutions of alanine, alanine plus equimolal HCl, and alanine plus equimolal NaOH at temperatures 278.15  T/K  368.15, at molalities 0.0075  m/mol · kg−1  1.0, and at the pressure p = 0.35 MPa using a vibrating tube densimeter. We have also measured the heat capacities of these solutions at 278.15  T/K  393.15 and at the same m and p using a twin fixed-cell differential temperature-scanning calorimeter. We used the densities to calculate apparent molar volumes Vϕ and the heat capacities to calculate apparent molar heat capacities Cp,ϕ for these solutions. We used our results and values from the literature for Vϕ(T, m) and Cp,ϕ(T, m) for HCl(aq), NaOH(aq), and NaCl(aq) and the molar heat capacity change ΔrCp,m(T, m) for ionization of water to calculate parameters for ΔrCp,m(T, m) for the two proton dissociations from protonated aqueous cationic alanine. We integrated these results in an iterative algorithm using Young’s Rule to account for the effects of speciation and chemical relaxation on Vϕ(T, m) and Cp,ϕ(T, m). This procedure yielded parameters for Vϕ(T, m) and Cp,ϕ(T, m) for alaninium chloride {H2Ala+Cl(aq)} and for sodium alaninate {Na+Ala(aq)} which successfully modeled our observed results. Values are given for ΔrCp,m, ΔrHm, pQa, ΔrSm, and ΔrVm for the first and second proton dissociations from protonated aqueous alanine as functions of T and m.  相似文献   

4.
In this work, densities ρ, speeds of sound u, and viscosities η, have been measured over the whole composition range for the binary mixtures of diethylene glycol monomethyl ether (DEGMME), CH3(OCH2CH2)2OH with 1-hexanol, CH3(CH2)5OH, 1-octanol, CH3(CH2)7OH, and 1-decanol, CH3(CH2)9OH at T = (293.15, 298.15, 303.15, and 308.15) K along with the properties of the pure components. By using the experimental values of ρ, u, and η, excess molar volume, VmE, deviations in viscosity, Δη, isentropic compressibility κS, deviations in isentropic compressibility ΔκS, deviations of the speed of sound Δu, have been calculated. The viscosity results have also been analysed in terms of some semi-empirical equations.  相似文献   

5.
The metal-metal bonds of the title compounds have been investigated with the help of energy decomposition analysis at the DFT/TZ2P level. In good agreement with experiment, computations yield Hg-Hg bond distance in [H3SiHg-HgSiH3] of 2.706 Å and Zn-Zn bond distance in [(η5-C5Me5)Zn-Zn(η5-C5Me5)] of 2.281 Å. The Cd-Cd bond distances are longer than the Hg-Hg bond distances. Bond dissociation energies (-BDE) for Zn-Zn bonds in zincocene −70.6 kcal/mol in [(η5-C5H5)2Zn2] and −70.3 kcal/mol in [(η5-C5Me5)2Zn2] are greater amongst the compounds under study. In addition, [(η5-C5H5)2M2] is found to have a binding energy slightly larger than those in [(η5-C5Me5)2M2]. The trend of the M-M bond dissociation energy for the substituents R shows for metals the order GeH3 < SiH3 < CH3 < C5Me5 < C5H5. Electrostatic forces between the metals are always attractive and they are strong (−75.8 to −110.5 kcal/mol). The results demonstrate clearly that the atomic partial charges cannot be taken as a measure of the electrostatic interactions between the atoms. The orbital interaction (covalent bonding) ΔEorb is always smaller than the electrostatic attraction ΔEelstat. The M-M bonding in [RM-M-R] (R = CH3, SiH3, GeH3, C5H5, C5Me5; M = Zn, Cd, Hg) has more than half ionic character (56-64%). The values of Pauli repulsions, ΔEPauli, electrostatic interactions, ΔEelstat, and orbital interactions, ΔEelstat are larger for mercury compounds as compared to zinc and cadmium.  相似文献   

6.
Hydrides FH3, ClH3, and OH?3 of type MH3E2 are calculated to adopt D3h structures: NH32?, PH32?, and SH3? each have two energy minima, one at D3h and the other at a T-shaped geometry, of which the D3his the more stable for SH3? but the less stable for NH32? and PH32?. Hydrides NH42?, OH4, and ClH4+ of type MH4E have a single energy minimum at Td: CH42?, SiH42?, PH4?, and SH4 each have two minima, one at Td (more stable for SH4 only) and one at an SF4-like C2v geometry, which is the more stable for CH42?, SiH42? and PH4?. D3h and C4V structures are very close in energy for all hydrides of type MH5E, with no activation barrier between the two configurations: D3h is the more stable configuration for OH5?, FH5, SH5, and ClH5, but C4V is the more stable for NH52?, SiH53?, and PH5?. The T1u bending force constant in hydrides MH6E becomes negative, for C3V distortion, in PH63? and SiH64?. Both the equilibrium geometries and the force constants strongly support an interpretation, in terms of the second-order Jahn-Teller effect, of the observed stereochemical inactivity of non-bonding electrons in the presence of ligands of low electronegativity. Molecular energies, equilibrium geometries, orbital energies and electron populations are reported for all species considered in this study. Three molecular states of ClH4?, of type MH4E2, were also briefly investigated.  相似文献   

7.
《Fluid Phase Equilibria》1998,152(2):277-282
Excess molar volumes VmE have been measured using a dilatometric technique for mixtures of cyclohexanone (C6H10O) with trichloromethane (CHCl3), 1,2-dichloroethane (CH2ClCH2Cl), trichloroethene (CHClCCl2), 1,1,1-trichloroethane (CCl3CH3), and cyclohexane (c-C6H12) at T=308.15 K, and for cyclohexanone+dichloromethane (CH2Cl2) at T=303.15 K. Throughout the entire range of the mole fraction χ of C6H10O, VmE has been found to be positive for χ C6H10O+(1−χ)c-C6H12, and negative for χ C6H10O+(1−χ)CH2Cl2, χ C6H10O+(1−χ)CHClCCl2, χ C6H10O+(1−χ)CHCl3, and χ C6H10O+(1−χ) CCl3CH3. For χ C6H10O+(1−χ)CH2ClCH2Cl, VmE has been found to be positive at lower values of χ and negative at high values of χ, with inversion of sign from positive to negative values of VmE for this system occurring at χ∼0.78. Values of VmE for the various systems have been fitted by the method of least squares with smoothing equation, and have been discussed from the viewpoint of the existence specific interactions between the components.  相似文献   

8.
We have measured the densities of aqueous solutions of glycine, glycine plus equimolal HCl, and glycine plus equimolal NaOH at temperatures 278.15  T/K  368.15, molalities 0.01  m/mol · kg−1  1.0, and at p = 0.35 MPa, using a vibrating tube densimeter. We have also measured the heat capacities of these solutions at 278.15  T/K  393.15 and at the same m and p using a fixed-cell differential scanning calorimeter. We used the densities to calculate apparent molar volumes Vϕ and the heat capacities to calculate apparent molar heat capacities Cp,ϕ for these solutions. We used our results and values of Vϕ(T, m) and Cp,ϕ(T, m) for HCl(aq), NaOH(aq), NaCl(aq) from the literature to calculate parameters for ΔrCp,m(T, m) for the first and second proton dissociations from protonated aqueous cationic glycine. We then integrated this value of ΔrCp,m(T, m) in an iterative algorithm, using Young’s Rule to account for the effects of speciation and chemical relaxation on the observed Vϕ and Cp,ϕ of the solutions. This procedure yielded parameters for Vϕ(T, m) and Cp,ϕ(T, m) for glycinium chloride {H2Gly+Cl(aq)} and sodium glycinate {Na+Gly(aq)} which successfully modeled our observed results. We have then calculated values of ΔrCp,m, ΔrHm, ΔrVm, and pQa for the first and second proton dissociations from protonated aqueous glycine as functions of T and m.  相似文献   

9.
Experimental results of density (ρ), speed of sound (u), and refractive index (nD) have been obtained for aqueous solutions of ethylene glycol monomethyl ether (EGMME), ethylene glycol monoethyl ether (EGMEE), diethylene glycol monomethyl ether (DEGMME), and diethylene glycol monoethyl ether (DEGMEE) over the entire concentration range at T = 298.15 K. From these measurements, the derived parameters, apparent molar volume of solute (?V), excess molar volume (VE), isentropic compressibility of solution (βS), apparent molar isentropic compressibility of solute (?KS), deviation in isentropic compressibility (ΔβS), molar refraction [R]1,2 and deviation in refractive index of solution (ΔnD) have been calculated. The Redlich–Kister equation has been fitted to the calculated values of VE, ΔβS and ΔnD for the solution. The results obtained are interpreted in terms of hydrogen bonding and various interactions among solute and solvent molecules.  相似文献   

10.
We have measured the densities of aqueous solutions of l-methionine, l-methionine plus equimolal HCl, and l-methionine plus equimolal NaOH at temperatures 278.15  T/K  368.15, at molalities 0.0125  m/mol · kg−1  1.0 as solubilities allowed, and at p = 0.35 MPa using a vibrating tube densimeter. We have also measured the heat capacities of these solutions at 278.15  T/K  393.15 and at the same m and p using a twin fixed-cell differential temperature-scanning calorimeter. We used the densities to calculate apparent molar volumes Vϕ and the heat capacities to calculate apparent molar heat capacities Cp,ϕ for these solutions. We used our results and values from the literature for Vϕ(T, m) and Cp,ϕ(T, m) for HCl(aq), NaOH(aq), and NaCl(aq) and the molar heat capacity change ΔrCp,m(T, m) for ionization of water to calculate parameters for ΔrCp,m(T, m) for the two proton dissociations from protonated aqueous cationic l-methionine. We integrated these results in an iterative algorithm using Young’s Rule to account for the effects of speciation and chemical relaxation on Vϕ(T, m) and Cp,ϕ(T, m). This procedure yielded parameters for Vϕ(T, m) and Cp,ϕ(T, m) for methioninium chloride {H2Met+Cl(aq)} and for sodium methioninate {Na+Met(aq)} which successfully modeled our observed results. Values are given for ΔrCp,m, ΔrHm, pQa, ΔrSm, and ΔrVm for the first and second proton dissociations from protonated aqueous l-methionine as functions of T and m.  相似文献   

11.
In contrast to well established experimental results of vibronic coupling effects in octahedral dn complexes with Eg ground states (Cu2+, Ag2+; Cr2+, Mn3+ etc.), not much useful material is available for the Jahn–Teller (JT) effect in orbital triplet ground states. The present study is concerned with this deficiency, providing data for octahedral halide model complexes with 3dn cations – in particular for TiIII, VIII and high-spin CoIII, NiIII with T2g and T1g ground states, which involve, to first-order, solely splitting of the π-antibonding t2g MOs. Besides experimental results – structural and spectroscopic, mainly from d–d spectra – data from computations are needed for a quantitative treatment of the Tg ? (?g + τ2g) vibronic interaction as well as in the Eg ? ?g coupling case (MnIII, low-spin NiIII); DFT was the method of choice, if only critically selected outcomes are utilised. The theoretical bases of the treatment are the dn ligand field matrices in Oh, extended by the inclusion of lower-symmetry distortion parameters, and the conventional theory of vibronic coupling. Caution is needed when classifying the effects of interelectronic repulsion; DFT does not reproduce the magnitudes of the Racah parameters B, C, as deduced from the d–d spectra, properly – the presumed reasons are analysed. DFT even allows one to deduce reliable vibronic coupling constants via the analysis of orbitally degenerate excited states (CrIII, 4A2g ground state). The group-theoretical analysis of the interaction with the JT-active ?g and τ2g modes yields D4h, D3d and D2h as the possible distortion symmetries in the case of a Tg ground state. The DFT-calculations give clear evidence, that the D4h stationary points represent the absolute minima in the Tg ? (?g + τ2g) potential surface – in agreement with experiment, where available. For the first time, vibronic coupling constants, characterising JT splitting of ground and excited Tg states, can be presented for trivalent 3dn cations in octahedral halide ligand fields. They turn out to be smaller by a factor of almost 3 in comparison to those, which determine the coupling in σ-antibonding eg MOs.The tetragonal splitting of Tg states is typically only small, around 0.1 eV, and suggests that strain influences from a specific ligand arrangement and/or the presence of different ligands may modify the potential surface considerably. We have studied such effects via compounds AIMIIIF4, where an elastic strain induced by the host structure, and a binding strain, due to the simultaneous existence of (largely) terminal and of bridging ligands, are active. A novel strain model, in its interplay with JT coupling, is proposed and applied – using energies from the d–d spectra, structural results and data from DFT.Chloride complexes are only known for TiIII to FeIII; the rather small electronegativity already of CoIII suggests a reducing ligand-to-metal (3dn) electron transfer for n  6. Similarly, the low-lying ligand-to-metal charge transfer bands in the d–d spectra of the CuIIIF63? complex and the reduced Tg ? ?g coupling strength suggest a pronounced covalency of the CuIII–F, and, even more distinctly, of the CuIII–O bond, which is of interest for superconductivity. The NiIIIF63? polyhedron possesses a low-spin configuration in the elpasolite structure. The spectroscopic evidence and the DFT data indicate, that the minimum positions of the alternative a2A1g(a2Eg) and a4A2g (a4T1g) potential curves are only ≤0.02 eV apart, giving rise to interesting high-spin/low-spin phenomena. It is the strong Eg ? ?g as compared to the T1g ? ?g coupling, which finally stabilises a spin-doublet ground state in D4h.We think, that the selected class of solids is unique particularly for the study of Jahn–Teller coupling in T ground states, with model character for other systems. In our overview a procedure is sketched, which uses reliable computational results (here from DFT) for supplementing incomplete experimental data, and presents – on a semiquantitative scale – convincing statements, consistent with chemical intuition. It is also a pleading for ligand field theory, which rationalises d-d spectra in terms of chemical bonding; though the latter spectra provide frequently only rather coarse information, their assistance in the energy analysis is crucial.  相似文献   

12.
Dissociative ionisation of organometallic cyclopentadiene derivatives containing one, two or three M(CH3)3 groups (M  Si, Ge, Sn) has been studied.Among the monometallated compounds, C5H5Si(CH3)2Cl, C5H5Si(CH3)2OCH3 and (C5H5)4Sb have also been investigated. To verify fragmentation patterns, the spectra of deuterated compounds such as C5D5Si(CH3)3, C5D5Sn(CH3)3, C5D4Si2(CH3)6 and C5D3Si3)9 have been measured. Dissociative ionisation of h1-cyclopentadienyl derivatives has been shown to differ essentially from that of h5-compounds.  相似文献   

13.
We have measured the densities of aqueous solutions of serine, serine plus equimolal HCl, and serine plus equimolal NaOH at temperatures 278.15  T/K  368.15, molalities 0.01  m/mol · kg−1  1.0, and at the pressure p = 0.35 MPa, using a vibrating tube densimeter. We have also measured the heat capacities of these solutions at 278.15  T/K  393.15 and at the same m and p using a fixed-cell differential temperature-scanning calorimeter. We used the densities to calculate apparent molar volumes Vϕ and the heat capacities to calculate apparent molar heat capacities Cp,ϕ for these solutions. We used our results and values from the literature for Vϕ(T,m) and Cp,ϕ(T,m) for HCl(aq), NaOH(aq), and NaCl(aq) and the molar heat capacity change ΔrCp,m(T,m) for ionization of water to calculate ΔrCp,m(T,m) for proton dissociations from protonated aqueous cationic serine and from the zwitterionic form. We integrated these results in an iterative algorithm using Young’s rule to account for the effects of speciation and chemical relaxation on the observed Vϕ(T,m) and Cp,ϕ(T,m) of the solutions. This procedure yielded parameters for Vϕ(T,m) and Cp,ϕ(T,m) for serinium chloride {H2Ser+Cl(aq)} and for sodium serinate {Na+Gly(aq)} which successfully modeled our observed results. We have then calculated ΔrCp,m, ΔrHm, ΔrVm and pQa for the first and second proton dissociations from protonated aqueous serine as functions of T and m.  相似文献   

14.
Excess molar volumes VE at 298.15 K were determined by means of a vibrating tube densimeter for binary mixtures of {heptane + open chain secondary (diethyl to dibutyl) and tertiary (triethyl to tripentyl) amines} as well as for cyclic imines (C2, C3, C4, C6, and C7) and primary cycloalkylamines (C5, C6, C7, and C12). The VE values were found positive for mixtures involving small size amines, with VE decreasing as the size increases. Negative VE’s were found for tributyl- and tripentylamine, heptamethylenimine, and cyclododecylamine. Mixtures of heptane with cycloheptylamine showed an s-shaped curve.Partial molar volumes V° of amines at infinite dilution in heptane were obtained from VE and compared with V° of hydrocarbons and other classes of organic compounds taken from literature. An additivity scheme, based on the intrinsic volume approach, was applied to estimate group (CH3, CH2, CH, C, NH2, NH, N, OH, O, CO, and COO) contributions to V°. These contributions, the effect of cyclization on V°, and the limiting slope of the apparent excess molar volumes were discussed in terms of solute–solvent and solute–solute interactions.  相似文献   

15.
The local structures for various Rh2+ centers in AgCl are theoretically studied using density functional theory (DFT) with periodic CP2K program. Through geometry optimizing, the stable ground states with minimal energies and electronic structures are obtained for the tetragonally elongated (TE), orthorhombically elongated (OE), and tetragonally compressed (TC) centers, and the corresponding g and hyperfine coupling tensors are calculated in ORCA level. The calculations reveal obvious Jahn–Teller elongation distortions of about 0.109 and 0.110 Å along [001] axis for TE and OE centers without and with 1 next nearest neighbor (nnn) cation vacancy VAg in [100] axis, respectively. Whereas TC center with 1 nnn VAg along [001] axis exhibits moderate axial compression of about 0.066 Å due to the Jahn–Teller effect. For OE and TC centers with 1 nnn VAg, the ligand intervening in the central Rh2+ and the VAg is found to displace away from the VAg by about 0.028 and 0.024 Å, respectively. The present results are discussed and compared with those of the previous calculations based on the perturbation formulas by using the improved ligand field theory.  相似文献   

16.
A universal program for variational calculations of molecular symmetry in solving anharmonic vibrational problems, realized by the author, is described. The program uses the group-theoretical method. Symmetrized basis wave functions are constructed with the aid of the generalized KJebsch-Gordan series suggested by the author. The method of constructing symmetrized basis wave functions and the program for adequate calculations of molecular symmetry were verified for many molecules of different symmetry groups: Oh, O, Td, Th, T, D∞h, Ct8v, Dnd, Dnh, Dn, Cnv, Cnh, S2n, Cn, Ci, Cs, and C1 where 2 ≤n ≤6. It was confirmed that the program provides correct results and high-speed operation. Translated fromZhurnal Strukturnoi Khimii, Vol. 38, No. 6, pp. 1146–1153, November–December, 1997.  相似文献   

17.
Data for the title reaction have been fitted using an RRKM/master equation approach. Energy transfer was modeled using an exponential decay with downward step sizes, ΔEd, as a fitting parameter. The low temperature (200 < T (K) < 300) combination of CH3 with Cl atoms in He can be accommodated with ΔEd (cm?1) = 400. Higher temperature (1600 < T (K) < 2100) decomposition in Ar required ΔEd(T) (cm?1) = 694(T/300)0.46. Previous analysis of the analogous system CH4 = CH3 + H required ΔEd(T) (cm?1) = 100(T/300) for He and ΔEd(T) (cm?1) = 150(T/300) for Ar. Understanding of the magnitudes and temperature dependence of ΔEd remains the greatest detriment to quantitative calculation, extrapolation, and prediction of unimolecular rate constants. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 41: 245–254, 2009  相似文献   

18.
The dissociation energies of MH4 (M =  La, Hf–Hg) were computed using full optimized reaction space (FORS) multi-configuration self-consistent field (MCSCF) and second-order multi-reference Møller–Plesset perturbation methods with the SBKJC basis sets augmented by a set of polarization functions (SBKJC(f,p)). It was shown that of the molecules examined, only four tetra-hydrides HfH4, TaH4, WH4, and OsH4 with Td symmetry are lower in energy than the corresponding dissociation limits. For WH4 and OsH4, the potential energy surfaces from the D4h to the Td structure were explored from both theoretical calculations and symmetry arguments based on the pseudo-Jahn- Teller effect. As for WH4, it is found that the ground state could be 3Eg, 3A2g, or 3B2g at the D4h structure. The present calculations suggest that the ground state is 3Eg, and that this state is stabilized by the eu deformation into a C2v structure (3B1) and then sequentially to the most stable Td structure (3A2). If the molecular system is promoted to the lowest 3B2g state, the D4h structure can directly deform into the most stable Td structure along the b2u vibrational mode. For OsH4, the ground state (5B1g) at the D4h structure deforms into a D2d structure and the resulting 5B2 state strongly interacts with the lowest 3E and 1A1 states due to the spin-orbit couplings (SOCs). As a result, it was shown that the relativistic potential energy of the lowest spin-mixed state (ground state) monotonically decreases along the D2d deformation path from the D4h to the Td structure.  相似文献   

19.
Polymerization of norbornene bearing Si(CH3)3 groups in the five position with the opening of double bonds was performed. By accurate selection of the ratios catalyst/co-catalyst and monomer/catalyst the samples with increased molecular mass (about 400,000) were obtained. Transport parameters of this, addition type poly(trimethylsilyl norbornene) (PTMSN) were measured using the gas chromatographic and mass spectrometric methods for different gases (H2, He, O2, N2, CO2, CH4, C2H6, C3H8 and n-C4H10). Temperature dependence of the permeability coefficients (P) indicated that low activation energies of permeation (EP) and diffusion (ED) are characteristic for PTMSN. In some cases (CO2, C2H6) negative EP values were observed. Thermodynamics of vapor sorption in this polymer was studied using the inverse gas chromatography method. It was shown that PTMSN is characterized by very large solubility coefficients S similar to those of poly(trimethylsilyl propyne) (PTMSP). The comparison of the P, D, and S values of these highly permeable polymers showed that the greater permeability of PTMSP is determined by the larger D values. Application of different approaches for the determination of the size of microcavities in PTMSN indicated that this polymer is characterized by large size of microcavity (800–1200 ?3).  相似文献   

20.
The apparent activation and deactivation energies and the corresponding frequency factors of coal desulfurization byThiobacillus ferrooxidans have been determined to be ΔE a = 60.9 kJ,A a = 1.45 s-1 and ΔEd = 178.3 kJ,A d = 5.65×1027 s-1, respectively. The thermo-dynamic values (AG?, ΔH ?, and ΔS?) of the activated complex were calculated. Kinetic parameters of the Monod equation were determined to beV m = 55.9 mg dm-3 h-1 andK = 24.1% pulp density. The maximum rate of desulfurization of coal was found to beV m = 55.7 mg dm-3 h-1 for the particle size. The generalized second order regression equation relating the yield of desulfurization to the leaching parameters was shown to adequately predict coal extraction data and optimum values of process variables. Tank leaching studies using optimum conditions resulted coal desulfurization about 90%. The iron hydrolysis reactions involving the formation of mono- and poly-nuclear, hydroxo- and sulfato complexes of amorphous and crystalline precipitates were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号