首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of bis(salicylidene)-m-phenylenediamine with zinc(II) ion affords a 2?:?2 dinuclear zinc(II) complex formulated as [Zn2(L1)2]. A similar 2?:?2 dinuclear zinc(II) complex, [Zn2(L2)2], can be obtained by reaction of bis(salicylidene)-m-aminobenzylamine with zinc(II) ion. These two dinuclear complexes slightly differ in their crystal structures, especially coordination environments around the zinc(II) centers, depending on the dissimilar flexibilities of the two ligands. The differences between the two complexes are reflected in their diffuse reflectance and photoluminescence behaviors.  相似文献   

2.
Three novel Schiff base cadmium(II) complexes, derived from the end‐on (μ‐1,1‐N3) azide or end‐to‐end (μ‐1,3‐NCS) thio cyanate bridges and similar tridentate Schiff base ligands, have been synthesized under similar synthetic procedures and their crystal structures determined by X‐ray diffraction methods. They are the dinuclear double end‐on azide‐bridged [Cd2(L1)2(N3)2(μ‐1,1‐N3)2] ( 1 ), the dinuclear double end‐on azide‐bridged [Cd2(L2)2(N3)2(μ‐1,1‐N3)2] ( 2 ), and the dinuclear double end‐to‐end thiocyanate‐bridged [Cd2(L3)2(NCS)2(μ1,3‐NCS)2] ( 3 ), where L1, L2 and L3 are three similar tridentate Schiff bases obtained by condensation of 2‐pyridylaldehyde with N,N‐diethylethane‐1,2‐diamine, of 2‐pyridylaldehyde with N‐isopropylethane‐1,2‐diamine, and of 2‐pyridylaldehyde with N,N‐dimethylpropane‐1,3‐diamine, respectively. Each cadmium(II) centre in the complexes is in a distorted octahedral coordination. There is a crystallographic inversion centre in each of the complexes. The similar small ligands used as the secondary ligands in the preparation of the cadmium(II) complexes with similar Schiff bases can result in similar structures.  相似文献   

3.
The dinucleating macrocyclic ligands (L2a)2? and (L2b)2? were prepared by [1?:?1] cyclic condensation of N,N′-dipropionitrile-N,N′-ethylene-di(5-methyl-3-formyl-2-hydroxybenzylamine or N,N′-dipropionitrile-N,N′-ethylene-di(5-bromo-3-formyl-2-hydroxybenzylamine with 1,3-diaminopropane. The ligands include dissimilar N(amine)2O2 and N(imine)2O2 coordination sites sharing two phenolic oxygen atoms and containing two propionitrile pendant arms on the amine nitrogen atoms. A series of mono- and dinuclear complexes were synthesized and characterized on the basis of elemental analysis, molar conductance measurement, X-ray crystallography, IR, NMR, and UV-Vis spectroscopies as well as cyclic voltammetric measurements. During the cyclization copper(II) migrates from the N(amine)2O2 to the N(imine)2O2 coordination site and one of the propionitrile pendant arms is removed. The heterodinuclear complexes [ZnL2Cu(OAc)]+ were prepared by a transmetallation reaction. The characterization results showed that the two metal ions are bridged by two phenolic oxygen atoms and an acetate group, providing distorted five-coordinate geometries for both metals.  相似文献   

4.
The stoichiometry of thermal decomposition reactions was studied for the following compounds: Ni{N(CN)2}2py2 (I) (py-pyridine), Ni{N(CN)2}2(2-Mepy)2 (II), Ni{N(CN)2}2(3-Mepy)2 (III) and Ni{N(CN)2}2(4-Mepy)3 (IV). In complexes I and II the loss of the volatile heterocyclic ligands occurs in one step while in complexes III and IV in two steps. Magnetic and spectral data indicated pseudooctahedral configuration for all complexes. The course of thermal N(CN)2-bridging reactions of the complexes studied are discussed. Part XXV in the series Heterogeneous reactions of solid Ni(II) complexes.  相似文献   

5.
Several Cu(II) complexes with 1,2,4-triazolo[1,5-a]pyrimidine (tp) and its 5,7-dimethyl derivative (dmtp) have been isolated and structurally characterized. Five of them are mononuclear and contain 1,10-phenanthroline (phen) or ethylenediamine (en) as auxiliary ligands, their formula being [Cu(H2O)(phen)(tp)2](ClO4)2 · H2O, [Cu(H2O)(phen)(dmtp)2](ClO4)2, [Cu(NO3)(H2O)(phen)(tp)](NO3), [Cu(H2O)2(en)(tp)2](ClO4)2 and [Cu(H2O)2(en)(dmtp)2](ClO4)2. In all these compounds the tp or dmtp ligand is monodentately coordinated via the nitrogen atom in position 3. The auxiliary ligand influences the coordination number, which is five when this ligand is phen and six when it is en whereas the number of triazolopyrimidine ligands linked to the metal seems to be influenced by the nature of the counteranion. A dinuclear compound with tp has also been isolated, its formula being [Cu2(OH)(H2O)2.5(tp)5](ClO4)3·(H2O)1.5, with both metal atoms linked by an hydroxydo group and by a tp bridging ligand, coordinated to one of the copper atoms via N3 and to the other via N4. This compound has several unusual features among the metal complexes with triazolopyrimidine derivatives: the presence of two different kinds of bridging moieties, the coexistence of bridging and terminal ligands and the formation of a N3–N4 bridge for a Cu(II) dinuclear compound for a derivative without exocyclic oxygen atoms.  相似文献   

6.
Mixed ligand dinuclear copper(II) complexes of the general formula [Cu2(Rdtc)tpmc)](ClO4)3 with octaazamacrocyclic ligand tpmc and four different heterocyclic dithiocarbamate ligands Rdtc?, as well as the complexes [Cu2(tpmc)](ClO4)4 and [Cu(tpmc)](ClO4)2?2H2O were studied in aqueous NaClO4 and HClO4 solutions by cyclic voltammetry on glassy carbon electrode. The electrochemical properties of the ligands and Cu(II) complexes were correlated with their electronic structure. Conductometric experiments showed different stoichiometry in complexation of tpmc with Cu2+ ions and transport of ions in acetonitrile and in aqueous media. These studies clarified the application of this macrocyclic ligand as ionophore in a PVC membrane copper(II) selective electrode and contributed elucidation of its sensor properties.  相似文献   

7.
A series of Hg(II) and Cd(II) homoleptic complexes with mixed donor (O,S and N,S) macrocycles is reported. The macrocyclic oxa thiacrowns 9S2O (1-oxa-4,7-dithiacyclononane) and 18S4O2 (1,10-dioxa-4,7,13,16-tetrathiacyclooctadecane) bind to Hg(II) to form distorted tetrahedral S4 geometries without coordination of the oxygen atoms. In contrast, the two macrocycles coordinate to Cd(II) through all ligand donors to form S4O2 environments. We also report the structure of bis(9N2S (1,4-diaza-7-thiacyclononane))cadmium(II), [Cd(9N2S)2]2+ which shows octahedral coordination in a trans N4S2 environment. Furthermore, two new homoleptic Cd(II) complexes with the related hexadentate macrocycles 18N6 (1,4,7,10,13,16-hexaazacyclooctadecane) and 18S6 (1,4,7,10,13,16-hexathiayclooctadecane) are described. Among the Cd(II) complexes, we highlight a trend in 113Cd NMR that shows progressive upfield chemical shifts as secondary amine donors replace thioether S donors.  相似文献   

8.
In this study, the synthesis, spectroscopic, catalytic, and electrochemical properties of salicylaldimine Schiff-base ligands (Ln) and their dinuclear Pd(II) complexes for L1 and L2 ligands with mononuclear Pd(II) complexes for L3 and L4 ligands were investigated. The ligands and their mono- or dinuclear Pd(II) complexes were characterized by FT-IR, UV-Vis, 1H NMR and elemental analysis, as well as through magnetic susceptibility and spectroelectrochemical techniques. The catalytic studies showed that the introduction of tert butyl groups on the salicyl ring of the molecules increased the catalytic activity towards hydrogenation of nitrobenzene and cyclohexene in DMF at 25 and 45 °C. It was also observed that the steric hindered mono- and dinuclear Pd(II) complexes were thermally stable complexes and were not sensitive to air or the moisture. The complexes were easily prepared from cheap materials that could be used as versatile and efficient catalysts for different C-C coupling reactions (Suzuki-Miyaura reactions).  相似文献   

9.
The complexation of mercury(II) cyanide with macrocyclic ligands 15-crown-5,18-crown-6 and dibenzo-24-crown-8 in dimethylsulfoxide was studied using199Hg NMR measurements. No significant complexation with 15-crown-5was observed. The stability constants Ks for 1 : 1 complexes with two other ligands were determined and found to be similar, in contrary to the results reported in nitrobenzene. Solvent effects on Ks values obtained are discussed in comparison with the literature data. X-ray crystal structure of Hg(CN)2.A18-crown-6 was also determined.  相似文献   

10.
Reactions of hydrated zinc(II) trifluoroacetate and sodium azide with two tridentate Schiff bases HL1 (2-((E)-(2-(dimethylamino)ethylimino)methyl)-4-chlorophenol) and HL2 (2-((E)-(2-(dimethylamino)ethylimino)methyl)-4-bromophenol) under the same reaction conditions yielded two dinuclear isostructural zinc(II) complexes, [Zn(L1)(N3)]2 (1) and [Zn(L2)(N3)]2 (2), respectively. The complexes were characterized systematically by elemental analysis, UV–Vis, FT-IR, and 1H NMR spectroscopic methods. Single-crystal X-ray diffraction studies reveal that each of the dinuclear complexes consists of two crystallographically independent zinc(II) ions connected by double bridging phenoxides. All zinc(II) ions in 1 and 2 are surrounded by similar donor sets and display distorted square–pyramidal coordination geometries. The ligands and complexes reveal intraligand 1(π → π*) flourescence. The enhancement of the fluorescence intensities for the complexes compared to the ligands indicates their potential to serve as photoactive materials.  相似文献   

11.
The (E, E)‐dioxime containing a dithia‐dioxa‐diaza macrocyclic moiety 5,6 : 11,12 : 17,18‐tribenzo‐2,3‐bis(hydroxyimino)‐1,4‐diaza‐7,16‐dithia‐10,12‐dioxacyclooctadecane ( H2L ) has been synthesized in high yield by a 1 + 1 addition of cyanogendi‐N‐oxide with 2,3 : 8,9 : 14,15‐tribenzo‐1,16‐diamino‐4,13‐dithia‐7,10‐dioxahexadecane ( 3 ) which was obtained from condensation reaction with 2‐amino thiophenol and 1,2‐bis(2‐bromoethoxy)benzene, in dichloromethane at –10 °C. Two vic‐Dioxime ligands coordinate with Ni(II), Cu(II) and Co(III) through its hydroxyimino nitrogen donor atoms by the loss of the oxime protons. Homo and heterotrinuclear CuII3 and CoIIIPdII2 complexes of this ligand have been prepared; their two ligand molecules are connected via hydroxyimino or BF2+‐bridging groups and two of the metal ions are coordinated by a diaza‐dithia mixed donor macrocyclic moiety. The macrocyclic ligand and its transition metal complexes have been characterized on the basis of 1H‐, 13C‐NMR, IR and MS spectroscopy and elemental analysis data.  相似文献   

12.
Abstract

The addition of nitromethane anion to the C=N group of polyalkyl-1,4,8,11-tetraazacyclotetradeca-4, 11-dienenickel(II) diperchlorate gave Ni(II) complexes of new macrocyclic ligands containing a pendant 5-nitromethyl group. Variable temperature (80–290 K) magnetic susceptibilities were determined for the paramagnetic monoperchlorates and the diamagnetic square-planar diperchlorates. Conformations of the nitromethyl groups in the macrocyclic ligands were established on the basis of 1H NMR evidence.  相似文献   

13.
Two new flexible extended dialdehydes (H2hpdd and H2pdd) with different functional pendant arms (? CH2CH2PhOH and ? CH2CH2Ph) have been synthesized and reacted with 1,2‐bis(2‐aminoethoxy)ethane to prepare Schiff‐base macrocyclic complexes in the presence of a ZnII‐ion template. As a result, two preorganized dinuclear ZnII intermediates ( 1 and 2 ), as well as two 42‐membered folded [2+2] macrocyclic dinuclear ZnII complexes ( 3 and 4 ), were produced. The central zinc ions in compounds 1 – 4 showed distinguishable coordination patterns with the dialdehydes and the [2+2] macrocyclic ligands, in which a subtle pH‐adjustment function of the two pendant arms (with or without the phenolic hydroxy group) was believed to play a vital role. Furthermore, cation‐ and anion‐recognition experiments for complexes 3 and 4 revealed that they could selectively recognize acetate ions by the formation of 1:1 stoichiometric complexes, as verified by changes in their UV/Vis and MS (ESI) spectra and even by the naked eye.  相似文献   

14.
Four dinuclear N ‐heterocyclic carbene (NHC) palladium complexes were prepared by reaction of imidazolinium salts, PdCl2 and bridging ligands (piperazine and DABCO) in one pot or by direct cleavage of the chloro‐bridged dimeric compounds [Pd(μ ‐Cl)(Cl)(NHC)]2 with bridging ligands. All of the complexes were fully characterized using 1H NMR, 13C NMR, high‐resolution mass and infrared spectroscopies, elemental analysis and single‐crystal X‐ray diffraction. The catalytic activities of the obtained palladium catalysts towards Hiyama coupling of aryl chlorides with phenyltrimethoxysilane were investigated and the results showed that the dinuclear palladium complexes were considerably active for the coupling reaction. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Since the manganese(II) complexes are known as having a high degree of stability, some of them may be able to play a very important role in biosystems. We prepared manganese(II) complexes with different chromospheres containing macrocyclic ligands bearing N, S and O like functional donor atoms in order to obtain different models of compounds. So these new manganese(II) complexes were derived from macrocyclic ligands by chelating them with metal ions. Thus, two macrocyclic ligands, L(1): 2,4-diphenyl-1,5-diaza-8,12-dioxo-6,7:13,14-dibenzocyclo tetradeca-1,4-diene[N(2)O(2)]ane; L(2): 2,4,9,11-tetraphenyl-6,13-dimethyl-1,5,8,12-traazacyclotertr-adeca-1,4,8,11-tetraene[N(4)]ane; and two more different form first one viz.-L(3): 1,7-diaza-4-monothia-10,14-dioxo-8,9:15,16-cyclohexadecane[N(2)O(2)S]ane and L(4): 4,13-diaoxa-1,7,10,16-hexazacyclooctadecane[N(4)O(2)]ane were prepared and their capacity to retain the manganese(II) ion in solid as well as aqueous solution was determined from various physiochemical techniques viz: characterized by elemental analyses, molar conductance measurements, magnetic susceptibility measurements, mass, IR, electronic, ESR spectral studies and cyclic voltammetric measurements.  相似文献   

16.
Bimetallic palladium(II) complexes containing classical NHC donor ligands are becoming increasingly popular owing to their various catalytic applications. However, examples of the aforementioned complexes with mixed NHC/PPh3 ligands are still rare. Bimetallic palladium(II) complexes possessing these mixed ligands are described starting from a C2-symmetric bis-imidazolium salt containing 4,4′-substituted central biphenyl ring. All the palladium(II) complexes have been tested as precatalysts in α-arylation of oxindole and Suzuki–Miyaura coupling reactions. The complex composed of mixed NHC/PPh3 donor ligands shows superior catalytic activity compared with the corresponding PEPPSI type complexes when applied in α-arylation of oxindole. The dinuclear complexes display better activity compared with the mononuclear complexes. The preliminary electrochemical measurements show the facile oxidation of PdII in the presence of combined NHC/PPh3 ligands compared with a combination of NHC/Py ligands.  相似文献   

17.
《印度化学会志》2021,98(8):100110
We have found that Cu(NO3)2 and 1,3-dione dioxime afford a variety of multicopper complexes under ambient conditions. Specifically, Cu(NO3)2 and cyclohexane-1,3-dione dioxime gave a trinuclear complex in which the central α-carbons of the three dioxime ligands are oxidized into carbonyl groups, two of which were further reacted with solvent MeOH to give a hemiacetal structure. On the other hand, Cu(NO3)2 and cyclopentane-1,3-dione dioxime gave a dinuclear complex in which Cu(II) was reduced to Cu(I) and two of the three ligands couple to give the fulvalene structure. Together with the previously reported reaction of Cu(NO3)2 and pentane-2,4-dione dioxime into a pentanuclear complex in which the four ligands were changed into trioximes, surprisingly rich chemistry has been discovered for combinations of Cu(NO3)2 and 1,3-dione dioximes.  相似文献   

18.
The coordination chemistry of a series of bis-bidentate ligands with cadmium(II) ions has been investigated. The ligands, containing two N,S-donor chelating (pyrazolyl/thioether) fragments, have afforded complexes of a variety of structural types (dinuclear M2L2 ‘mesocate’ complexes, a one-dimensional chain coordination polymer and a simple mononuclear complex) according to whether the bis-bidentate ligands act as bridges spanning two metal ions, or a tetradentate chelate to a single metal ion. The p-phenylene and m-biphenyl spaced ligands L1 and L3 form dinuclear M2L2 complexes where the ligands are arranged in a ‘side-by-side’ fashion. In contrast the m-phenylene spaced ligand L2 forms a one-dimensional coordination polymer where the ligands adopt a highly folded conformation. The 1,8-naphthalene spaced ligand L4 adopts a tetradendate chelating mode and affords a simple mononuclear complex.  相似文献   

19.
Copper(II) complexes generalized as Cu2N6 and CuN6 were prepared by using hexadentate ligands, and their spectral and electrochemical behavior was analysed. X-ray analysis of binuclear [Cu2L2Cl2]2+ reveals that one copper is trigonal bipyramidal and the other is square pyramidal. Electronic spectra used to determine their stereochemistry in solution indicate that dinuclear Cu2N6 has two visible bands that correspond to a typical five-coordinate copper(II) environment, whereas only one broad band was obtained for mononuclear CuN6. When NaN3 was added to the dinuclear compounds, their UV–visible spectra underwent significant changes and an isosbestic point at 650?nm was observed; however, no such feature was encountered for the mononuclear compounds.  相似文献   

20.
In the current work, two triazine‐based multidentate ligands (H2L1 and H2L2) and their homo‐dinuclear Mn (II), mononuclear Ln (III) and hetero‐dinuclear Mn (II)/Ln (III) (Where Ln: Eu or La) complexes were synthesized and characterized by spectroscopic and analytical methods. Single crystals of a homo‐dinuclear Mn (II) complex {[Mn (HL1)(CH3OH)](ClO4·CH3OH}2 ( 1 ) were obtained and the molecular structure was determined by X‐ray diffraction method. In the structure of the complex, each Mn (II) ion is seven‐coordinate and one of the phenolic oxygen bridges two Mn (II) centre forming a dimeric structure. The UV–Vis. and photoluminescence properties of synthesized ligands and their metal complexes were investigated in DMF solution and the compounds showed emission bands in the UV–Vis. region. The catecholase enzyme‐like activity of the complexes were studied for 3,5‐DTBC → 3,5‐DTBQ conversion in the presence of air oxygen. Homo‐dinuclear Mn (II) complexes ( 1 and 4 ) were found to efficiently catalyse 3,5‐DTBC → 3,5‐DTBQ conversion with the turnover numbers of 37.25 and 35.78 h?1 (kcat), respectively. Mononuclear Eu (III) and La (III) complexes did not show catecholase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号