首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 733 毫秒
1.
The 2-picolylcyclopentadienyl derivatives of rhodium(I) and iridium(I) of formula [M{η5-C5H4(2-CH2C5H4N)}(η4-C8H12)] (3) (M = Rh) and (4) (M = Ir) are obtained in good yields by reacting 2-picolylcyclopentadienyllithium (7) with [RhCl(η4-C8H12)]2 and [IrCl(η4-C8H12)]2, respectively. The corresponding dicarbonyl derivatives, [M{η5-C5H4(2-CH2C5H4N)}(CO)2] (5) (M = Rh) and 6 (M = Ir), are obtained in good yields by reacting 2-picolylcyclopentadienylthallium(I) (8) with [RhCl(CO)2]2 and [IrCl(C5H5N)(CO)2], respectively. 5 has already been reported in the literature. The new complexes were characterized by elemental analysis, mass spectrometry, 1H NMR, FT-IR, and UV-Vis (210-330 nm) spectroscopy. The UV-Vis spectra indicate the existence of some electronic interaction between the 2-picolinic chromophore and the cyclopentadienyl-metal moiety. The study of the electrochemical behaviour of 3-6 by cyclic voltammetry (CV) allows the interpretation of the electrode processes and gives information about the location of the redox sites. Moreover, various synthetic strategies were tested in order to try to coordinate the complexes 3-6 to a ruthenium(II) centre, but most of them failed. Instead, the hetero-bimetallic complex bis(2,2′-bipyridine)[(η5-2-picolylcyclopentadienyl)(η4-cycloocta-1,5-diene)rhodium(I)]chlororuthenium(II)-(hexafluorophosphate) (13), was obtained, although in poor yields (10%), by reacting the nitrosyl complex [RuCl(bipy)2(NO)][PF6]214 (bipy = 2,2′-bipyridine) first with potassium azide and then with the rhodium(I) complex 3. The analogous complex bis(2,2′-bipyridine)(2-picoline)chlororuthenium(II)-(hexafluorophosphate) (15), that carries a ruthenium-bonded 2-picoline molecule instead of 3, has prepared in the same way. 13 and 15 were characterized by elemental analysis, mass spectrometry, and 1H NMR.  相似文献   

2.
The reaction of [CpRu(PPh3)2Cl] and [CpOs(PPh3)2Br] with chelating 2-(2′-pyridyl)imidazole (N ∩ N) ligands and NH4PF6 yields cationic complexes of the type [CpM(N ∩ N)(PPh3)]+ (1: M = Ru, N ∩ N = 2-(2′-pyridyl)imidazole; 2: M = Ru, N ∩ N = 2-(2′-pyridyl)benzimidazole; 3: M = Ru, N ∩ N = 2-(2′-pyridyl)-4,5-dimethylimidazole; 4: M = Ru, N ∩ N = 2-(2′-pyridyl)-4,5-diphenylimidazole; 5: M = Os, N ∩ N = 2-(2′-pyridyl)imidazole; 6: M = Os, N ∩ N = 2-(2′-pyridyl)benzimidazole). They have been isolated and characterized as their hexafluorophosphate salts. Similarly, in the presence of NH4PF6, [Cp∗Ir(μ-Cl)Cl]2 reacts in dry methanol with N ∩ N chelating ligands to afford in excellent yield [Cp∗Ir(N ∩ N)Cl]PF6 (7: N ∩ N = 2-(2′-pyridyl)imidazole; 8: N ∩ N = 2-(2′-pyridyl)benzimidazole). All the compounds have been characterized by infrared and NMR spectroscopy and the molecular structure of [1]PF6, [2]PF6 and [7]PF6 by single-crystal X-ray structure analysis.  相似文献   

3.
Phosphinimine-imine ((C6H3i-Pr2)NC(Me)CH2PPh2(NC6H3i-Pr2))Rh(CO)2 - (1) and β-diketiminate CH(C(Me)(Ni-Pr2C6H3))2Rh(CO)2 - (2) rhodium dicarbonyl complexes were prepared as to elucidate any difference among these anionic, nitrogen-based ligands regarding donating ability to the rhodium center. Utilizing infrared spectroscopy and single crystal structural comparisons, differences in electron density donation by the ligands to the rhodium center were not observed. The carbonyl stretching frequencies of the aforementioned rhodium complexes were νCO = 2055, 1987 and 2055, 1988 for the phosphinimine-imine (1) and β-diketiminate (2) respectively.  相似文献   

4.
2-Phenylaniline reacted with Pd(OAc)2 in toluene at room temperature for 24 h in a one-to-one molar ratio and with the system PdCl2, NaCl and NaOAc in a 1 (2-phenylaniline):1 (PdCl2):2 (NaCl):1 (NaOAc) molar ratio in methanol at room temperature for one week to give the dinuclear cyclopalladated compounds (μ-X)2[Pd{κ2-N2′,C1-2-(2′-NH2C6H4)C6H4}]2 [1a (X = OAc) and 1b (X = Cl)] in high yield. Moreover, the reaction between 2-phenylaniline and Pd(OAc)2 in one-to-one molar ratio in acid acetic at 60 °C for 4 h, followed by a metathesis reaction with LiBr, allowed isolation of the dinuclear cyclopalladated compound (μ-Br)2[Pd{κ2-N2′,C1-2-(2′-NH2C6H4)C6H4}]2 (1c) in moderate yield. A parallel treatment, but using monodeuterated acetic acid (DOAc) as solvent in the cyclopalladation reaction, allowed isolation of a mixture of compounds 1c, 1cd1 [Pd{κ2-N2′,C1-2-(2′-NH2C6H4)C6H4](μ-Br)2[Pd{κ2-N2′,C1-2-(2′-NH2C6H4)-3-d-C6H3] and 1cd2 (μ-Br)2[Pd{κ2-N2′,C1-2-(2′-NH2C6H4)-3-d-C6H3}]2 in moderate yield and with a deuterium content of ca. 60%. 1a and 1b reacted with pyridine and PPh3 affording the mononuclear cyclopalladated compounds [Pd{κ2-N2′,C1-2-(2′-NH2C6H4)C6H4}(X)(L)] [2a (X = OAc, L = py), 2b (X = Cl, L = py), 3a (X = OAc, L = PPh3) and 3b (X = Cl, L = PPh3)] in a yield from moderate to high. Furthermore, 1a reacted with Na(acac) · H2O to give the mononuclear cyclopalladated compound 4 [Pd{κ2-N2′,C1-2-(2′-NH2C6H4)C6H4}(acac)] in moderate yield. 1H NMR studies in CDCl3 solution of 2a, 2b, 3a, 3b and 4 showed that 2a and 3a presented an intramolecular hydrogen bond between the acetato ligand and the amino group, and were involved in a dynamic equilibrium with water present in the CDCl3 solvent; and that the enantiomeric molecules of 2b and 4 were in a fast exchange at room temperature, while they were in a slow exchange for 2a, 3a and 3b. The X-ray crystal structures of 3b and 4 were determined. 3b crystallized in the triclinic space group with a = 9.9170(10), b = 10.4750(10), c = 12.0890(10) Å, α = 98.610(10)°, β = 94.034(10)° and γ = 99.000(10)° and 4 in the monoclinic space group P21/a with a = 11.5900(10), b = 11.2730(10), c = 12.2150(10) Å, α = 90°, β = 107.6560(10)° and γ = 90°.  相似文献   

5.
A new route was used to synthesize half-sandwich rhodium complexes containing both N-heterocyclic carbenes (NHC) and carborane ligands. The rhodium carbene complexes CpRh(L)[S2C2(B10H10)] (Cp = pentamethylcyclopentadienyl, L = 1,3-dimethylimidazolin-2-ylidene; 4) can be obtained from the reaction of CpRh(L)Cl2 (2) with Li2S2C2(B10H10) or from the reaction of CpRh[S2C2(B10H10)] (3) with silver-NHC complex prepared by direct reaction of an imidazolium precursor and Ag2O. Complexes 2 and 4 were characterized by IR, NMR spectroscopy, element analysis and X-ray structure analyses.  相似文献   

6.
The (borole)iodide complex [(η5-C4H4BPh)RhI]4 reacts with the carborane anion [Carb′] (Carb′ = 9-SMe2-7,8-C2B9H10) giving (Carb′)Rh(η5-C4H4BPh) (2). Reactions of 2 with dicationic fragments [LM]2+ afford the μ-borole triple-decker complexes [(Carb′)Rh(μ-η55-C4H4BPh)ML]2+ [LM = CpIr (4), (Carb′)Rh (7)] or the arene-type complexes [(Carb′)Rh(μ-η56-C4H4BPh)ML]2+ [LM = CpRh (3), (Carb′)Ir (8)]. The structure of 4(BF4)2 was determined by X-ray diffraction.  相似文献   

7.
Diorganodiselenide [2-(Et2NCH2)C6H4]2Se2 (1) was obtained by hydrolysis/oxidation of the corresponding [2-(Et2NCH2)C6H4]SeLi derivative. The treatment of [2-(Et2NCH2)C6H4]2Se2 with elemental sodium in THF resulted in [2-(Et2NCH2)C6H4]SeNa (2). Reactions between alkali metal selenolates [2-(R2NCH2)C6H4]SeM′ (R = Me, Et; M′ = Li, Na) and MCl2 (M = Zn, Cd) in a 2:1 molar ratio resulted in the [2-(R2NCH2)C6H4Se]2M species [R = Me, M = Zn (3), Cd (4); R = Et, M = Zn (5), Cd (6)]. The new compounds were characterized by multinuclear NMR (1H, 13C, 77Se, 113Cd) and mass spectrometry. The crystal and molecular structures of 1, 3 and 4 revealed monomeric species stabilized by N → Se (for 1) and N → M (for 3 and 4) intramolecular interactions.  相似文献   

8.
Coordinatively unsaturated rhodium and iridium complexes having a bulky thiolate, [Cp∗M(PMe3)(SDmp)](BArF4) (1a: M = Rh; 1b: M = Ir; Dmp = 2,6-(mesityl)2C6H3, ArF = 3,5-(CF3)2C6H3), catalyzed the hydrogenation of benzaldehyde, N-benzylideneaniline, and cyclohexanone, under 1 atm of H2 at low temperatures. In these catalytic reactions, the M-H/S-H complexes [Cp∗M(PMe3)(H)(HSDmp)](BArF4) (2a: M = Rh; 2b: M = Ir) generated via H2 heterolysis by 1a or 1b were suggested to transfer both M-H hydride and S-H proton to substrates. The catalytic reactions were terminated by the dissociation of H-SDmp from the metal centers of 2a and 2b that occurs at ambient temperature under H2 atmosphere.  相似文献   

9.
Based on the versatile ligand 1H-3-(3-pyridyl)-5-(4-pyridyl)-1,2,4-triazole (3,4′-Hbpt) (1), a series of coordination compounds [Ni(3,4′-Hbpt)(ip)] (2), [Ni(3,4′-Hbpt)2(tp)(H2O)2] (3), [Ni2(3,4′-Hbpt)(5-NO2-ip)2(H2O)4] (4) and [Ni(3,4′-Hbpt)(pm)0.5(H2O)3]·2H2O (5) have been hydrothermally constructed through R-phenyldicarboxyl (R = H, NO2 and COOH) intervention effect (ip = isophthalic anion, tp = terephthalic anion, 5-NO2-ip = 5-NO2-isophthalic anion, pm = pyromellitic anion). Structural analysis reveals that 3,4′-Hbpt adopts μ-Npy, Npy coordination modes in two typical conformations in these target coordination compounds. In cooperation with the auxiliary ligands benzenedicarboxylate connectors, a variety of Ni(II) coordination networks such as 2-D layer with (4, 4) topology (2) 1-D chain (3), honeycomb (4) and 2-D helical chains (5) have been assembled. Theoretical calculation based on density functional theory (DFT) for ligand (1) is also employed to explicate the stability of the different conformations. Moreover, thermal stability of these crystalline materials is explored by TG-DTG.  相似文献   

10.
Condensation of (S)-2-amino-2′-hydroxy-1,1′-binaphthyl with 1 equiv. of pyrrole-2-carboxaldehyde in toluene in the presence of molecular sieves at 70 °C gives (S)-2-(pyrrol-2-ylmethyleneamino)-2′-hydroxy-1,1′-binaphthyl (1H2) in 90% yield. Deprotonation of 1H2 with NaH in THF, followed by reaction with LnCl3 in THF gives, after recrystallization from a toluene or benzene solution, dinuclear complexes (1)3Y2(thf)2 · 3C7H8 (3 · 3C7H8) and (1)3Yb2(thf)2 · 3C6H6 (4 · 3C6H6), respectively, in good yields. Treatment of 1H2 with Ln[N(SiMe3)2]3 in toluene under reflux, followed by recrystallization from a benzene solution gives the dimeric amido complexes {1-LnN(SiMe3)2}2 · 2C6H6 (Ln = Y (5 · 2C6H6), Yb (6 · 2C6H6)) in good yields. All compounds have been characterized by various spectroscopic techniques, elemental analyses and X-ray diffraction analyses. Complexes 5 and 6 are active catalysts for the polymerization of methyl methacrylate (MMA) in toluene, affording syn-rich poly-(MMA)s.  相似文献   

11.
The synthesis of half-sandwich binuclear transition-metal complexes containing the CabC,C chelate ligands (CabC,C = C2B10H10 (1)) is described. 1Li2 was reacted with chloride-bridged dimers [Cp∗RhCl(μ-Cl)]2 (Cp∗ = η5-C5(CH3)5), [Cp′RhCl(μ-Cl)]2 (Cp′ = η5-1,3-tBu2C5H3), [Cp∗IrCl(μ-Cl)]2 and [(p-cymene)RuCl(μ-Cl)]2 to give half-sandwich binuclear complexes [Cp∗Rh(μ-Cl)]2(CabC,C) (2), [Cp′Rh(μ-Cl)]2(CabC,C) [3),[Cp∗Ir(μ-Cl)]2(CabC,C) (4) and [(p-cymene)Ru(μ-Cl)]2(CabC,C) (5), respectively. Addition reactions of the ruthenium complex 5 with air gave [(p-cymene)2Ru2(μ-OH)(μ-Cl)](CabC,C) (6), rhodium complex 2 with LiSPh gave [Cp∗Rh(μ-SPh)]2(CabC,C) (7). The complexes were characterized by IR, NMR spectroscopy and elemental analysis. In addition, X-ray structure analysis were performed on complexes 2-7 where the potential C,C-chelate ligand was found to coordinate in a bidentate mode as a bridge.  相似文献   

12.
Triple-decker complexes with a bridging borole ligand (C4H4BPh)Rh(μ-C4H4BPh)ML (ML = RuCp, 2a; RuCp, 2b; FeCp, 3; Co(C4Me4), 4; Ir(cod), 5) were synthesized by stacking reactions of [Rh(C4H4BPh)2] (1) with cationic [ML]+ fragments. The structures of 2a,b and (C4H4BPh)Rh(μ-C4H4BPh)Rh(C4H4BPh) (6) were determined by X-ray diffraction.  相似文献   

13.
Two dinuclear RhI-cyclooctadiene complexes [1,4-(cod)Rh(B(R’)pz2)-C6H4-(B(R’)pz2)Rh(cod)], linked by a ditopic scorpionate ligand, have been prepared and fully characterized (R′ = Ph (2), C6F5 (2F); pz = pyrazolide). Both compounds were tested as catalysts for phenylacetylene polymerization but showed no catalytic activity. Attempts at the synthesis of corresponding complexes of the sterically more demanding ligands (R′ = Ph (4), C6F5 (4F); pzPh = 3-phenylpyrazolide) resulted in B-N bond cleavage and formation of the dinuclear complex [(cod)Rh(μ-pzPh)2Rh(cod)] (5). Complex 5 proved to be an efficient catalyst for the preparation of highly stereoregular head-to-tail cis-transoidal poly(phenylacetylene).  相似文献   

14.
15.
The direct cyclopalladation of 3-methoxyimino-2-(4-chlorophenyl)-3H-indole (1a) and 3-methoxyimino-2-phenyl-3H-indole (1b) results in the regioselective activation of the ortho σ[C(sp2, phenyl)-H] bond affording (μ-OAc)2[Pd{κ2-C,N-C6H3-4R-1-(C8H4N-3′-NOMe)}]2 (2) {R = Cl (2a) or H (2b)} that contain a central “Pd(μ-OAc)2Pd” core. Compounds 2a and 2b reacted with triphenylphosphine (in a molar ratio PPh3:2 = 2) giving [Pd{κ2-C,N-C6H3-4R-1-(C8H4N-3′-NOMe)}(OAc)(PPh3)] (3) {R = Cl (3a) or H (3b)}. Treatment of 2a or 2b with a slight excess of LiCl in acetone produced the metathesis of the bridging ligands and the formation of (μ-Cl)2[Pd{κ2-C,N-C6H3-4R-1-(C8H4N-3′-NOMe)}]2 (4) {R = Cl (4a) or H (4b)} with a central “Pd(μ-Cl)2Pd” moiety. The reactions of 4a or 4b with deuterated pyridine (py-d5) or triphenylphosphine gave the monomeric derivatives [Pd{κ2-C,N-C6H3-4R-1-(C8H4N-3′-NOMe)}Cl(L)] with R = Cl or H and L = py-d5 (5) or PPh3 (6). The crystal structure of 6b·1/2CH2Cl2 confirmed the mode of binding of the ligand, the nature of the metallated carbon atom and a trans-arrangement of the phosphine ligand and the heterocyclic nitrogen. Theoretical calculations on the free ligands are also reported and have allowed the rationalization of the regioselectivity of the cyclopalladation process.  相似文献   

16.
The syntheses of the compounds [M(Cp)(aeaz)(az)](OTf)2 (4, 5) (M = Rh(III), Ir(III); aeaz = C2H4NC2H4NH2, az = C2H4NH (3)) containing cationic N-(2-aminoethyl)aziridine-N,N′ chelate complexes are described. The bis-aziridine complexes [MCl(Cp)(az)2]Cl (M = Rh (1), M = Ir (2)) react with an excess of the aziridine (az) in the presence of AgO3SCF3 (=AgOTf) via AgCl precipitation and az addition followed by a metal-mediated coupling reaction, to give the compounds [M(Cp)(aeaz)(az)](OTf)2 (4, 5). The new aeaz ligand is formally the dimerisation product of az. Using the same reaction conditions with the analogous, but weaker Lewis acidic ruthenium(II) complex [RuCl(C6Me6)(az)2]Cl (6) an anion exchange reaction yielding [RuCl(C6Me6)(az)2]OTf (8) is observed. After purification, all compounds are fully characterized using IR, FAB-MS, 1H and 13C NMR spectroscopy. The single crystal X-ray structure analysis reveals a distorted octahedral geometry for all complexes.  相似文献   

17.
The chemistry of η3-allyl palladium complexes of the diphosphazane ligands, X2PN(Me)PX2 [X = OC6H5 (1) or OC6H3Me2-2,6 (2)] has been investigated.The reactions of the phenoxy derivative, (PhO)2PN(Me)P(OPh)2 with [Pd(η3-1,3-R′,R″-C3H3)(μ-Cl)]2 (R′ = R″ = H or Me; R′ = H, R″ = Me) give exclusively the palladium dimer, [Pd2{μ-(PhO)2PN(Me)P(OPh)2}2Cl2] (3); however, the analogous reaction with [Pd(η3-1,3-R′,R″-C3H3)(μ-Cl)]2 (R′ = R″ = Ph) gives the palladium dimer and the allyl palladium complex [Pd(η3-1,3-R′,R″-C3H3)(1)](PF6) (R′ = R″ = Ph) (4). On the other hand, the 2,6-dimethylphenoxy substituted derivative 2 reacts with (allyl) palladium chloro dimers to give stable allyl palladium complexes, [Pd(η3-1,3-R′,R″-C3H3)(2)](PF6) [R′ = R″ = H (5), Me (7) or Ph (8); R′ = H, R″ = Me (6)].Detailed NMR studies reveal that the complexes 6 and 7 exist as a mixture of isomers in solution; the relatively less favourable isomer, anti-[Pd(η3-1-Me-C3H4)(2)](PF6) (6b) and syn/anti-[Pd(η3-1,3-Me2-C3H3)(2)](PF6) (7b) are present to the extent of 25% and 40%, respectively. This result can be explained on the basis of the steric congestion around the donor phosphorus atoms in 2. The structures of four complexes (4, 5, 7a and 8) have been determined by X-ray crystallography; only one isomer is observed in the solid state in each case.  相似文献   

18.
The reaction of the labile compound [Re2(CO)8(CH3CN)2] with 2,3-bis(2-pyridyl)pyrazine in dichloromethane solution at reflux temperature afforded the structural dirhenium isomers [Re2(CO)8(C14H10N4)] (1 and 2), and the complex [Re2(CO)8(C14H10N4)Re2(CO)8] (3). In 1, the ligand is σ,σ′-N,N′-coordinated to a Re(CO)3 fragment through pyridine and pyrazine to form a five-membered chelate ring. A seven-membered ring is obtained for isomer 2 by N-coordination of the 2-pyridyl groups while the pyrazine ring remains uncoordinated. For 2, isomers 2a and 2b are found in a dynamic equilibrium ratio [2a]/[2b]  =  7 in solution, detected by 1H NMR (−50 °C, CD3COCD3), coalescence being observed above room temperature. The ligand in 3 behaves as an 8e-donor bridge bonding two Re(CO)3 fragments through two (σ,σ′-N,N′) interactions. When the reaction was carried out in refluxing tetrahydrofuran, complex [Re2(CO)6(C14H10N4)2] (4) was obtained in addition to compounds 1-3. The dinuclear rhenium derivative 4 contains two units of the organic ligand σ,σ′-N,N′-coordinated in a chelate form to each rhenium core. The X-ray crystal structures for 1 and 3 are reported.  相似文献   

19.
Nine new compounds, namely [CuL1(biim-6)] · H2O (1), [ZnL1(biim-6)] · H2O (2), [MnL1(biim-6)] · H2O (3), [MnL1(biim-4)] (4), [Co2(L2)2(biim-5)3 · 6H2O] · 8H2O (5), [ZnL3(biim-6)] (6), [ZnL3(biim-5)] (7), [CdL3(biim-5) · 1.5H2O] · 0.5H2O (8) and [CdL4(biim-6) · 2H2O] (9) [where L1 = oxalate anion, L2 = fumarate anion, L3 = phthalate anion, L4 = p-phthalate anion, biim-4 = 1,1′-(1,4-butanediyl)bis(imidazole), biim-5 = 1,1′-(1,5-pentanedidyl)bis(imidazole) and biim-6 = 1,1′-(1,6-hexanedidyl)bis(imidazole)] were successfully synthesized. Compounds 13 are isostructural, and display 2D polymeric structures. Compound 4 shows a threefold interpenetrating diamondoid framework. In compound 5, the anions act as counterions, and the metal cations are bridged by bis(imidazole) ligands to form 1D polymeric chains. Compounds 69 show 2D polymeric structures. The magnetic properties for 1, 3 and 4 and luminescent properties for 2 and 69 are discussed. Thermogravimetric analyses (TGA) for these compounds are also discussed.  相似文献   

20.
Eleven borosiloxane [R′Si(ORBO)3SiR′] compounds where R′ = But and R = Ph (1), 4-PhC6H4 (2), 4-ButC6H4 (3), 3-NO2C6H4 (4), 4-CH(O)C6H4 (5), CpFeC5H4 (6), 4-C(O)CH3C6H4 (7), 4-ClC6H4 (8), 2,4-F2C6H3 (9), and R′ = cyclo-C6H11 and R = Ph (10), and 4-BrC6H4 (11) have been synthesized and characterized by spectroscopic (IR, NMR), mass spectrometric and, for compounds where R′ = But and R = 4-PhC6H4 (2), 4-ButC6H4 (3), 3-NO2C6H4 (4), CpFeC5H4 (6) and 2,4-F2C6H3 (9), X-ray diffraction studies. These compounds contain trigonal planar RBO2 and tetrahedral R′SiO3 units located around 11-atom “spherical” Si2O6B3 cores. The dimensions of the Si2O6B3 cores in compounds 2, 3, 4, 6 and 9 are remarkably similar. The reaction between [ButSi{O(PhB)O}3SiBut] (1), and excess pyridine yields the 1:1 adduct [ButSi{O(PhB)O}SiBut]. NC5H5 (12) while the reaction between 1 and N,N,N′,N′-tetramethylethylenediamine in equimolar amounts affords a 2:1 borosiloxane:amine adduct [ButSi{O(PhB)O}3SiBut]2 · Me2NCH2CH2NMe2 (13). Compounds 12 and 13 were characterised with IR and (1H, 13C and11B) NMR spectroscopies and the structure of the pyridine complex 12 was determined with X-ray techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号