首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The rigid tris- and bis(catecholamide) ligands H(6)A, H(4)B and H(4)C form tetrahedral clusters of the type M(4)L(4) and M(4)L(6) through self-assembly reactions with tri- and tetravalent metal ions such as Ga(III), Fe(III), Ti(IV) and Sn(IV). General design principles for the synthesis of such clusters are presented with an emphasis on geometric requirements and kinetic and thermodynamic considerations. The solution and solid-state characterization of these complexes is presented, and their dynamic solution behavior is described. The tris-catecholamide H(6)A forms M(4)L(4) tetrahedra with Ga(III), Ti(IV), and Sn(IV); (Et(3)N)(8)[Ti(4)A(4)] crystallizes in R3(-)c (No. 167), with a = 22.6143(5) A, c = 106.038(2) A. The cluster is a racemic mixture of homoconfigurational tetrahedra (all Delta or all Lambda at the metal centers within a given cluster). Though the synthetic procedure for synthesis of the cluster is markedly metal-dependent, extensive electrospray mass spectrometry investigations show that the M(4)A(4) (M = Ga(III), Ti(IV), and Sn(IV)) clusters are remarkably stable once formed. Two approaches are presented for the formation of M(4)L(6) tetrahedral clusters. Of the bis(catecholamide) ligands, H(4)B forms an M(4)L(6) tetrahedron (M = Ga(III)) based on an "edge-on" design, while H(4)C forms an M(4)L(6) tetrahedron (M = Ga(III), Fe(III)) based on a "face-on" strategy. K(5)[Et(4)N](7)[Fe(4)C(6)] crystallizes in I43(-)d (No. 220) with a = 43.706(8) A. This M(4)L(6) tetrahedral cluster is also a racemic mixture of homoconfigurational tetrahedra and has a cavity large enough to encapsulate a molecule of Et(4)N(+). This host-guest interaction is maintained in solution as revealed by NMR investigations of the Ga(III) complex.  相似文献   

4.
Two one-dimensional complexes, [Ni(SCN)2(abba)2] n (abba?=?4-(4-aminobenzyl)benzenamine) (1) and [Ni(SCN)2(aptba)2] n (aptba?=?4-(4-aminophenylthio)benzenamine) (2), were synthesized and characterized by EA, IR, X-ray crystallography and thermal analysis. The single crystal X-ray structural analyses of 1 and 2 show the complexes to be 1D chain polymers as a result of dibenzenamine (dba) bridging. Each Ni is six-coordinate and adopts a slightly distorted octahedral geometry with four N atoms from four dba ligands and two N atoms from two NCS-groups. Adjacent Ni atoms and two dba ligands form a 24-membered macrocycle. Thermogravimetric analysis and differential thermogravimetric analysis of 2 show that the thermal decomposition of 2 includes four transitions.  相似文献   

5.
6.
Two new complexes of imidazole alcohols, 4-hydroxymethylimidazole (4-CH2OHim) and 4-hydroxymethyl-5-methylimidazole (4-CH2OH-5-CH3im), with cobalt(II) of formula [CoL2(H2O)2](NO3)2 were obtained. These compounds were described through single X-ray diffraction studies, spectroscopic (Ir. Far-IR, UV-Vis-NIR) and magnetic measurements. In the present complexes imidazole ligands are bidentate coordinating the heterocyclic ring through pyridine-like nitrogen and the oxygen atom of the hydroxymethyl group (chromophore CoN2O4). The shape of Co(II) coordination polyhedra is that of a distorted octahedron, with the equatorial plane defined by the 4-CH2OHim (or 4-CH2OH-5-CH3im) bidentate ligands and two water molecules occupying axial positions (i.e. trans to each other). Formation of successive cobalt(II) complexes with 4-CH2OH-5-CH3im in aqueous solution was followed quantitatively by potentiometry.  相似文献   

7.
8.
9.
10.
1 INTRODUCTION An interesting aspect in the studies of copper-sulfur coordination chemistry is the apparent tendency of Cu(Ⅰ) ions to form various clusters with sulfur ligands. The coordination chemistry of Cu(Ⅰ) has been studied extensively owing to the importance of Cu(Ⅰ) in biological systems and copper-sulfur bonds detected in some metallopro- teins[1]. More recently, remarkably rich photoluminescence properties have been found in the tetranuclear complexes[2~5] and the cage-ty…  相似文献   

11.
Palladium clusters Pd4(SEt)4(OAc)4(I) and Pd6(SEt)12(II) were synthesized and studied. Their structure was determined by X-ray diffraction analysis. For I, a= 9.774(2) Å, b= 10.821(2) Å, c= 13.061(3) Å, = 92.88(3)°, V= 1379.6(5) Å3, (calcd.) = 2.182 g/cm3, space group P21/n, Z= 4, N ref= 1558, and R= 0.031; for II, a= 10.581(1) Å, b= 10.584(2) Å, c= 11.478(2) Å, = 101.62(1)°, = 104.95(1)°, = 106.74(1)°, V= 1135.2(4) Å3, (calcd) = 2.007 g/cm3, space group P1, Z= 1, N ref= 2828, and R= 0.022. In cluster I, four Pd atoms form a planar cycle. The neighboring palladium atoms are bound by two acetate or by two mercaptide bridges, the Pd···Pd distances being 3.036–3.195 Å. In cluster II, Pd atoms form a planar six-membered cycle with Pd···Pd distances of 3.083–3.127 Å. The neighboring palladium atoms are bound by two mercaptide bridges. The formation of analogous clusters in solution was confirmed by IR spectroscopy.  相似文献   

12.
Huang FQ  Ibers JA 《Inorganic chemistry》2001,40(10):2346-2351
The alkali metal/group 4 metal/polychalcogenides Cs(4)Ti(3)Se(13), Rb(4)Ti(3)S(14), Cs(4)Ti(3)S(14), Rb(4)Hf(3)S(14), Rb(4)Zr(3)Se(14), Cs(4)Zr(3)Se(14), and Cs(4)Hf(3)Se(14) have been synthesized by means of the reactive flux method at 823 or 873 K. Cs(4)Ti(3)Se(13) crystallizes in a new structure type in space group C(2)(2)-P2(1) with eight formula units in a monoclinic cell at T = 153 K of dimensions a = 10.2524(6) A, b = 32.468(2) A, c = 14.6747(8) A, beta = 100.008(1) degrees. Cs(4)Ti(3)Se(13) is composed of four independent one-dimensional [Ti(3)Se(13)(4-)] chains separated by Cs(+) cations. These chains adopt hexagonal closest packing along the [100] direction. The [Ti(3)Se(13)(4-)] chains are built from the face- and edge-sharing of pentagonal pyramids and pentagonal bipyramids. Formal oxidation states cannot be assigned in Cs(4)Ti(3)Se(13). The compounds Rb(4)Ti(3)S(14), Cs(4)Ti(3)S(14), Rb(4)Hf(3)S(14), Rb(4)Zr(3)Se(14), Cs(4)Zr(3)Se(14), and Cs(4)Hf(3)Se(14) crystallize in the K(4)Ti(3)S(14) structure type with four formula units in space group C(2)(h)()(6)-C2/c of the monoclinic system at T = 153 K in cells of dimensions a = 21.085(1) A, b = 8.1169(5) A, c = 13.1992(8) A, beta = 112.835(1) degrees for Rb(4)Ti(3)S(14);a = 21.329(3) A, b = 8.415(1) A, c = 13.678(2) A, beta = 113.801(2) degrees for Cs(4)Ti(3)S(14); a = 21.643(2) A, b = 8.1848(8) A, c = 13.331(1) A, beta = 111.762(2) degrees for Rb(4)Hf(3)S(14); a = 22.605(7) A, b = 8.552(3) A, c = 13.880(4) A, beta = 110.919(9) degrees for Rb(4)Zr(3)Se(14); a = 22.826(5) A, b = 8.841(2) A, c = 14.278(3) A, beta = 111.456(4) degrees for Cs(4)Zr(3)Se(14); and a = 22.758(5) A, b = 8.844(2) A, c = 14.276(3) A, beta = 111.88(3) degrees for Cs(4)Hf(3)Se(14). These A(4)M(3)Q(14) compounds (A = alkali metal; M = group 4 metal; Q = chalcogen) contain hexagonally closest-packed [M(3)Q(14)(4-)] chains that run in the [101] direction and are separated by A(+) cations. Each [M(3)Q(14)(4-)] chain is built from a [M(3)Q(14)] unit that consists of two MQ(7) pentagonal bipyramids or one distorted MQ(8) bicapped octahedron bonded together by edge- or face-sharing. Each [M(3)Q(14)] unit contains six Q(2)(2-) dimers, with Q-Q distances in the normal single-bond range 2.0616(9)-2.095(2) A for S-S and 2.367(1)-2.391(2) A for Se-Se. The A(4)M(3)Q(14) compounds can be formulated as (A(+))(4)(M(4+))(3)(Q(2)(2-))(6)(Q(2-))(2).  相似文献   

13.
The reactions (NH4)2MeS4 = 2 NH3 + H2S + MeS3 (Me = Mo, W) were investigated by measuring the decomposition vapour pressures. Thermochemical data were obtained from these measurements: ΔH = 52 kcal/mole and ΔS = 105 cal/deg.mole for the decomposition of the tetrathiomolybdate. Similarly, ΔH = 69 kcal/mole and ΔS = 106 cal/deg.mole were obtained for the decomposition of the tetrathiotungstate. The normal heat of formation of (NH4)2MoS4 was found to be ΔH = ?140 kcal/mole. The kinetics of thermal decomposition of the above reactions were also measured.  相似文献   

14.
The reaction of a 1:2 mixture of bismuth(III) salicylate with titanium(IV) isopropoxide in refluxing toluene has been investigated and found to proceed with ligand exchange to produce the new heterobimetallic complexes BiTi(4)(sal)(6)(mu-O(i)Pr)(3)(O(i)Pr)(4) (1), Bi(4)Ti(4)(sal)(10)(mu-O(i)Pr)(4)(O(i)Pr)(4) (2), and Bi(8)Ti(8)(sal)(20)(mu-O(i)Pr)(8)(O(i)Pr)(8) (3). Complex 1 is the major product, while 2 and 3 were identified as minor products from the reaction. Compound 1 is produced pure and in high yield by employing stoichiometric amounts of reagents; its crystal structure consists of a [Ti(4)(sal)(6)(O(i)Pr)(7)](3)(-) ion capped by a Bi(3+) ion. Complexes 2 and 3 exhibit cyclic ring structures of bismuth and titanium atoms showing crystallographically imposed inversion symmetry. Both structures occlude large quantities of lattice solvent. The compositional and structural parameters from the single crystal studies indicate that complexes 2 and 3 may represent sequential steps in a ligand exchange process between the two metal species, while the reactivity patterns that were observed provide clues about the solution state structure of bismuth(III) salicylate itself. The 2D COSY (1)H NMR spectrum of 1 indicates retention of the asymmetric structure in solution as evidenced by the presence of 14 diastereotopic isopropoxide methyl resonances.  相似文献   

15.
16.
17.
The structures of lithium iron dimolybdate, LiFe(MoO4)2, and lithium gallium dimolybdate, LiGa(MoO4)2, are shown to be isomorphous with each other. Their structures consist of segregated layers of LiO6 bicapped trigonal bipyramids and Fe(Ga)O6 octahedra separated and linked by layers of isolated MoO4 tetrahedra. The redetermined structure of trilithium gallium trimolybdate, Li3Ga(MoO4)3, shows substitional disorder on the Li/Ga site and consists of perpendicular chains of LiO6 trigonal prisms and two types of differently linked Li/GaO6 octahedra.  相似文献   

18.
We analyzed the molecular orbitals for a Al(4)Cl(4)(NH(3))(4) compound, which is a model of the (AlBr x NEt(3))(4) crystal structure recently reported by Schn?ckel and co-workers. We found that even though Al(4)Cl(4)(NH(3))(4) contains a planar square Al(4) cluster it is not an aromatic compound. However, the addition of two sodium atoms to Al(4)Cl(4)(NH(3))(4) yields a new Na(2)Al(4)Cl(4)(NH(3))(4) compound which is a pi-aromatic molecule. We hope that prediction of this new compound will facilitate a synthesis of aluminum aromatic solids.  相似文献   

19.
20.
Summary CuII complexes of 2-formyl-, 2-acetyl- and 2-benzoylpyridine N(4)-phenyl-, N(4)-o-methoxyphenyl-, N(4)-p-methoxyphenyl- and N(4)-p-nitrophenyltniosemicarbazones, coordinated either as neutral or monoanionic ligands, have been prepared and characterized. I.r., electronic and e.p.r. spectra of the complexes, as well as 1H-and 13C-n.m.r. spectra of the thiosemicarbazones, have been obtained. Both the thiosemicarbazones and their complexes show either modest or no growth inhibitory activity against Paecilomyces variotii. However, some of these thiosemicarbazones possess significant activity against a number of tumour cell strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号