首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A mathematic model is developed to describe heat and mass transfer with phase change in the porous wick of evaporator of capillary pumped loop (CPL). This model with six field variables, including temperature, liquid content, pressure, liquid velocity, vapor velocity and phase-change rate, is closed mathematically with additional pressure relationships introduced. The present model is suitable to the numerical computation, as the established equations become comparatively easy to solve, which is applied to CPL evaporator. The numerical results are obtained and the parameter effects on evaporator are discussed. The study demonstrates that instead of an evaporative interface, there exists an unsaturated two-phase zone between the vapor-saturated zone and the liquid-saturated zone in the wick of CPL evaporator.  相似文献   

2.
Heat transfer enhancement from cylindrical heat sources as electronic components established at the bottom of duct with in-line arrangement and also from the bottom by electrohydrodynamic (EHD) actuator has been investigated experimentally. Air flow is drawn to the duct with various Reynolds numbers based on hydraulic diameter of inlet of the test section (Re = 0, 500, 1100, 2500 and 3870) that include natural convection (confined and unconfined cases) and forced convection (laminar and turbulent flows). Wire electrodes are arranged in transverse direction and perpendicular to the main flow with two various arrangements and high voltages are applied up to 30 kV in the wires. The results revealed that the second electrode arrangement (three wires over the ribs) is more effective due to more enhancement of heat transfer and less corona power consumption in comparison with the first one (four wires between the ribs). Also the electric field is obviously more effective for low Reynolds numbers.  相似文献   

3.
A comparative experimental study was conducted in order to investigate the convective heat transfer characteristics of water-based suspensions of microencapsulated phase change material (MEPCM) flowing through rectangular copper minichannels. The hydraulic diameter of the channels was 2.71 mm. MEPCM particles with an average size of 4.97 μm were used to form suspensions with mass concentrations ranging from 0 to 20%. The comparative experiments were performed for varying mass flow rates in the laminar region and varying thermal conditions. The cooling performance of the MEPCM suspensions strongly depended on the mass flow rate and the MEPCM mass concentration. The 5% suspension always showed a better cooling performance than water resulting in lower wall temperatures and enhanced heat transfer coefficients within the whole range of mass flow rates. The suspensions with higher mass concentrations, however, were more effective only at low mass flow rates. At higher mass flow rates they showed a less effective cooling performance than water.  相似文献   

4.
This work represents an experimental basic research aimed to investigate the influence on the heat transfer rate of the ultrasounds, in free convection and in presence of liquid. In fact the ultrasonic waves induce, thanks to vibrations, turbulence on the dynamic field, and so an increase of the convection coefficient. The heater is a circular cylinder, immersed in distilled water, and warmed up by Joule effect. This study has carried on for 1 year at Energetics Department “L. Poggi”. The effect was observed since 1960s: different authors had studied the cooling effect due to the ultrasonic waves at different heat transfer regimes, especially from a thin platinum wire to water. We have chosen to investigate the subcooled boiling regime, because this one is the best condition for the heat transfer enhancement, according to the scientific literature. We have carried out a wide experimental study, varying the different water subcooling degrees, the ultrasonic generator power, the ultrasound frequency and the placement of the heater inside the ultrasonic tank, in function of the range of the values of heat flux per unit surface needed dissipating. These values were supplied us by a possible practical application of the ultrasonic streaming: the cooling of 3D highly integrated electronic components. These packaging systems should have to provide all future devices, such as electronics, actuators, sensors and antenna. In fact, for these systems the thermal problem is a critical challenge, because they do not have to overtake critical temperature, after that they could damage irreversibly. Moreover, the traditional cooling systems used in electronic do not seem to be useful for them. On the contrary, the results obtained with ultrasounds, allow heat transfer coefficient enhancement of about 50% to be reached.The purpose is to find out the set of optimal conditions, in order to apply successively all the results to a real packaging system.  相似文献   

5.
In desalinization devices and some heat exchangers making use of low-quality heat energy, both wall temperatures and wall heat fluxes of the heated tubes are generally quite low; hence they cannot cause boiling in flooded tube-bundle evaporators with common large tube spacing. However, when the tube spacing is very small, the incipient boiling in restricted spaces can generate and results in higher heat transfer than that of pool boiling at the same heat flux. This study investigated experimentally the effects of tube spacing, positions of tubes and test pressures on the boiling heat transfer of water in restricted spaces of the compact in-line bundles consisting of smooth horizontal tubes. The experimental results show that tube spacing and tube position have significant effects on the boiling heat transfer in a compact tube bundle. There is an optimum tube spacing that provides the largest heat transfer coefficient at the same heat flux.  相似文献   

6.
Fluid property effects on electrohydrodynamic (EHD) heat transfer enhancement were investigated. Heat transfer, pressure drop, electrical power requirements, and the transition between the viscous dominated and electrically dominated flow regimes as a function of fluid properties were examined using three cooling oils having widely varying physical properties. Low viscosity and low electrical conductivity gave the greatest heat transfer enhancement for a given electrical power input. The required electrical power to achieve a specified heat transfer enhancement was greater for working fluids that had a small charge relaxation time, defined as the ratio of the electrical permittivity to the electrical conductivity. These results correlate well with available experimental and analytical data. A theoretical prediction of the effect of fluid properties and forced flow rate on the onset of EHD enhancement was experimentally verified. The onset of significant EHD heat transfer enhancement occurs most readily in low viscosity liquids at low Reynolds number flows for a given electrical power input.  相似文献   

7.
Microstructure heat exchangers have unique properties that make them useful for numerous scientific and industrial applications. The power transferred per unit volume is mainly a function of the distance between heat source and heat sink—the smaller this distance, the better the heat transfer. Another parameter governing for the heat transfer is the lateral characteristic dimension of the heat transfer structure; in the case of microchannels, this is the hydraulic diameter. Decreasing this characteristic dimension into the range of several 10s of micrometers leads to very high values for the heat transfer rate.

Another possible way of increasing the heat transfer rate of a heat exchanger is changing the flow regime. Microchannel devices usually operate within the laminar flow regime. By changing from microchannels to three dimensional structures, or to planar geometries with microcolumn arrays, a significant increase of the heat transfer rate can be achieved.

Microheat exchangers in the form of both microchannel devices (with different hydraulic diameters) and microcolumn array devices (with different microcolumn layouts) are presented and compared. Electrically heated microchannel devices are presented, and industrial applications are briefly described.  相似文献   


8.
An experimental study on the heat transfer performance of microencapsulated phase change material suspensions flowing in the rectangular tube of small aspect ratio (b/a = 0.14) is presented in this work. The slurry of higher MPCM concentration shows better cooling performance in the most section of dimensionless axial distance whereas worse in a small section at the beginning. Up to 20.6% of the dimensionless wall temperature was decreased by the 20 wt% MPCM suspension as compared to water.  相似文献   

9.
A finite element formulation and analysis is developed to study coupled heat transfer and viscous flow in a weld pool. The thermal effects generate not only buoyancy forces but also a variation in the surface tension which acts to drive the viscous flow in the molten weld pool. A moving phase boundary separates molten and solid material. Numerical experiments reveal the nature of the highly convective flow in the weld pool and the associated thermal profiles. The relative importance of buoyancy, surface tension, phase change, convection, etc. are examined. We also consider the sensitivity of the solution to the finite element mesh and related non-linear numerical instabilities. Of particular interest is the coupling of the thermal and viscous flow fields for the case when radial flow is inward or outward.  相似文献   

10.
A series of experiments has been conducted in which a pulsed air jet is impinged upon a heated surface for the purpose of enhancing heat transfer relative to the corresponding steady air jet. Traditional variables such as jet to plate spacing, Reynolds number, and pulse frequency have been investigated. One additional flow variable – the duty cycle – representing the ratio of pulse cycle on-time to total cycle time is introduced and shown to be significant in determining the level of heat transfer enhancement. Specifically, heat transfer enhancement exceeding 50% is shown for a variety of operating conditions. In each case, the duty cycle producing the best heat transfer is shown to depend upon each of the other flow parameters. Recommendations are made for further experimentation into optimizing the duty cycle parameter for any particular application.  相似文献   

11.
This short communication reports our recent work on the synthesis and characterisation ofmicrocapsules of phase change materials using silica as the shell material through a one-step method. The method uses no surfactants or dispersants for stabilising the capsules. The results show that the one-step method allows the tuning of the size and polydispersity of the capsules, and the use of different core materials. Analyses of the capsules show that they contain about 65% phase change materials. The results also suggest no need for a stabilising agent due to self-stabilisation by the amine groups. Further work is underway to investigate the mechanical and thermal properties of the microcapsules and the scale-up of the method.  相似文献   

12.
Tube inserts are used as heat transfer enhancement tool for both retrofit and new design of shell and tube heat exchangers. This paper discusses and reviews the characteristics and performance of twisted tapes. The theory and application are also addressed. Industrial case study was selected to illustrate the behaviour effect that the twisted tapes impose at various laminar, transition and turbulent flow regions. This effect was demonstrated by changing the inside tube diameter and twist ratio through evaluating selected exchanger design parameters such as: local heat transfer coefficient, friction factor and pressure drop. Testing the exponent powers for Re and Pr at both laminar and turbulent regions were carried out. General design considerations are outlined for the use of twisted tapes in shell and tube heat exchangers.  相似文献   

13.
Injection of sub-millimeter bubbles is considered a promising technique for enhancing natural convection heat transfer for liquids. So far, we have experimentally investigated heat transfer characteristics of laminar natural convection flows with sub-millimeter bubbles. However, the effects of the bubble size on the heat transfer have not yet been understood. The purpose of this study is to clarify the effects of the bubble size on the heat transfer enhancement for the laminar natural convection of water along a vertical heated plate with uniform heat flux. Temperature and velocity measurements, in which thermocouples and a particle tracking velocimetry technique are, respectively used, are conducted to investigate heat transfer and flow characteristics for different bubble sizes. Moreover, two-dimensional numerical simulations are performed to comprehensively understand the effects of bubble injection on the flow near the heated plate. The result shows that the ratio of the heat transfer coefficient with sub-millimeter-bubble injection to that without injection ranges from 1.3 to 2.2. The result also shows that for a constant bubble flow rate, the heat transfer coefficient ratio increases with a decrease in the mean bubble diameter. It is expected from our estimation based on both experimental data and simulation results that this increase results from an increase in the advection effect due to bubbles.  相似文献   

14.
In the paper the results of comparative investigations on heat transfer performance of boiler convective bundle and its additional surface, i.e. membrane water wall are presented. For this purpose the non-uniform flow field was modelled in an isothermal test stand operated in self-modeling mode. Then the heat transfer characteristics of such arrangement were estimated by means of naphthalene heat/mass transfer analogy technique. The bundle samples in the shape of round bars (rods) were cast with naphthalene and placed in 27 locations in the bundle while water-wall-modeling samples were coated with naphthalene by painting. Both types of samples were exposed to cold air flow. The results were then compared to the mean heat transfer performance of the same bundle exposed to uniform flow field. The differences of approximately 10% were noticed. Moreover, the heat transfer coefficients for additional surface were even three times lower than those of the bundle. In view of results obtained in the work, the commonly made assumption of equality of heat transfer coefficients for both the bundle and its additional surface may lead to certain errors in heat transfer calculations and discrepancies between the calculated values of heating surfaces area and later operational needs of steam generator.  相似文献   

15.
The effect of Al2O3 particles on the heat transfer performance of an oscillating heat pipe (OHP) was investigated experimentally. Water was used as the base fluid for the OHP. Four size particles with average diameters of 50 nm, 80 nm, 2.2 μm, and 20 μm were studied, respectively. Experimental results show that the Al2O3 particles added in the OHP significantly affect the heat transfer performance and it depends on the particle size. When the OHP was charged with water and 80 nm Al2O3 particles, the OHP can achieve the best heat transfer performance among four particles investigated herein. In addition, it is found that all particles added in the OHP can improve the startup performance of the OHP even with 20 μm Al2O3 particles.  相似文献   

16.
The finite element method is used to analyse convective heat transfer in a porous medium. Convection past a vertical surface embedded in the medium and convection in a confined porous medium enclosure are analysed using the above method. The results are compared with those available in the literature and the agreement is found to be good. The method is applicable for two-dimensional analysis in a porous body of any arbitrary shape. The restriction of the boundary layer assumption is relaxed.  相似文献   

17.
One of the serious problems associated with the operation of PCM storage system is the heat transfer in and out of the element containing the PCM. This paper presents the results of an experimental investigation of the effects of radial fins and turbulence promoters on the enhancement of phase change heat transfer external to a horizontal tube submersed in the PCM with the working fluid flowing through it. The experimental measurements were realized on a bare cupper tube and an identical cupper tube fitted with radial fins. The fins investigated are 40, 60, 120 and 180 mm diameters. A turbulence promoter made of stainless steel wire of 1.0 mm diameter coiled in a helical form with a pitch of 25.0 mm was inserted into the cupper tubes. The tests were realized on bare tubes, finned tubes and finned tubes with the turbulence promoter inserted into the finned tubes. The measurements were realized for the working fluid temperatures in the range of −10 °C, to −25 °C and six values of the mass flow rate ranging from 0.013 to 0.031 kg/s. The position of the phase interface was photographed by a high resolution digital camera and scanned to determine the real interface position by comparison with a precision measuring scale. The results of the phase interface position, velocity of the interface, solidified mass fraction and the time for complete solidification are presented in function of the working fluid temperature, the working fluid mass and the tube arrangements. The results are presented and discussed.  相似文献   

18.
A fractal model for the subcooled flow boiling heat transfer is proposed in this paper. The analytical expressions for the subcooled flow boiling heat transfer are derived based on the fractal distribution of nucleation sites on boiling surfaces. The proposed fractal model for the subcooled flow boiling heat transfer is found to be a function of wall superheat, liquid subcooling, bulk velocity of fluid (or Reynolds number), fractal dimension, the minimum and maximum active cavity size, the contact angle and physical properties of fluid. No additional/new empirical constant is introduced, and the proposed model contains less empirical constants than the conventional models. The proposed model takes into account all the possible mechanisms for subcooled flow boiling heat transfer. The model predictions are compared with the existing experimental data, and fair agreement between the model predictions and experimental data is found for different bulk flow rates.  相似文献   

19.
Nanofluid is the term applied to a suspension of solid, nanometer-sized particles in conventional fluids; the most prominent features of such fluids include enhanced heat characteristics, such as convective heat transfer coefficient, in comparison to the base fluid without considerable alterations in physical and chemical properties. In this study, nanofluids of aluminum oxide and copper oxide were prepared in ethylene glycol separately. The effect of forced convective heat transfer coefficient in turbulent flow was calculated using a double pipe and plate heat exchangers. Furthermore, we calculated the forced convective heat transfer coefficient of the nanofluids using theoretical correlations in order to compare the results with the experimental data. We also evaluated the effects of particle concentration and operating temperature on the forced convective heat transfer coefficient of the nanofluids. The findings indicate considerable enhancement in convective heat transfer coefficient of the nanofluids as compared to the base fluid, ranging from 2% to 50%. Moreover, the results indicate that with increasing nanoparticles concentration and nanofluid temperature, the convective heat transfer coefficient of nanofluid increases. Our experiments revealed that in lower temperatures, the theoretical and experimental findings coincide; however, in higher temperatures and with increased concentrations of the nanoparticles in ethylene glycol, the two set of results tend to have growing discrepancies.  相似文献   

20.
Heat transfer dissipation from a horizontal rectangular fin embedded with equilateral triangular perforations is computed numerically using one-dimensional finite element technique. The bases of the triangles are parallel and toward the fin base. The body of the fin is discretized into a number of subdivisions (finite elements). The number of these elements can be altered as required according to the automatic mesh generation. The heat dissipation of the perforated fin is computed and compared with that of the solid one of the same dimensions and same thermal properties. The comparison refers to acceptable results and heat dissipation enhancement due to certain perforation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号