首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
近年来 ,有许多文献报道茂金属催化剂的负载化及其在烯烃聚合中的应用 ,这对发展新型茂金属催化剂和开发新型高分子材料有重要意义 [1,2 ] .我们 [3]曾报道壳聚糖负载稀土催化剂用于甲基丙烯酸甲酯的配位聚合有优良性能 .以五甲基环戊二烯为配体的有机稀土配合物 ,如 [Sm H( C5Me5) ]2 ,[C5Me5]Ln Me( THF) ( Ln=Sm,Yb)等在甲苯中单组分引发甲基丙烯酸甲酯聚合及内酯开环聚合具有许多优异性能[4 ,5] ,但是经负载化的该类催化剂的聚合性能尚未见报道 .本文报道将 [C5Me5]2 Sm Me·( THF)负载于二氧化硅 ,引发甲基丙烯酸甲酯聚合的结…  相似文献   

2.
合成了5种单茂双烷基稀土配合物Cp'Ln(CH2C6H4NMe2-o)2(1:Cp'=C5Me4Si Me3,Ln=Sc;2:Cp'=C9H7,Ln=Sc;3:Cp'=C5H5,Ln=Sc;4:Cp'=C5H5,Ln=Lu;5:Cp'=C5H5,Ln=Y)在助剂[Ph3C]-[B(C6F5)4]的活化下,考察了稀土金属和配体结构对异戊二烯和苯乙烯的均聚合活性和立体选择性的影响规律.结果表明小空间位阻的单茂钪(C5H5)Sc(CH2C6H4NMe2-o)2(3)催化异戊二烯聚合时,聚合活性和顺式立体选择性较优;催化苯乙烯聚合时获得无规聚苯乙烯.因此选用单茂钪催化剂3/[Ph3C][B(C6F5)4],考察了其催化异戊二烯/苯乙烯共聚合的性能,高活性地获得了组成和分子量可控、分子量窄分布的异戊二烯/苯乙烯多嵌段共聚物.通过1H-NMR,13C-NMR,GPC以及DSC对共聚物进行分析表征,结果表明,通过调控苯乙烯与异戊二烯的加料比例,共聚物中苯乙烯摩尔含量可以在1%~75%间调控,聚苯乙烯嵌段为无规聚苯乙烯;共聚物中聚异戊二烯顺-1,4选择性均大于91%;通过调控单体与催化剂的比例,共聚物分子量(Mn)可以在3.5×104~8.3×104间调控,分子量分布保持窄分布(Mw/Mn=1.71~1.94).  相似文献   

3.
以4种不同结构的α-二亚胺镍(Ⅱ)催化剂[(t-Bu)—N CH—CH N—(t-Bu)]NiBr2(C1),[C6H5—N C(Me)—C(Me)N—C6H5]NiBr2(C2),[(2,6-C6H3(Me)2)—N C(Me)—C·(Me)N—(2,6-C6H3(Me)2)]NiBr2(C3)和[(2,6-C6H3(i-Pr)2)—N C(An)—C(An)N—(2,6-C6H3(i-Pr)2)]NiBr2(An=acenaphthyl)(C4),在甲基铝氧烷(MAO)作用下,对甲基丙烯酸甲酯(MMA)进行催化聚合.以C2为模型催化剂系统研究了Al/Ni摩尔比、单体浓度、聚合温度、聚合时间和反应溶剂对催化活性及聚合物分子量的影响.在较适合的聚合条件(催化剂用量为1.6μmol,Al/Ni摩尔比为800,MMA浓度为2.9 mol/L,甲苯为溶剂,聚合温度为60℃,聚合时间为4 h)下,讨论了催化剂结构对催化活性和聚合物分子量的影响.研究发现,催化剂C1~C3催化MMA聚合均得到富含间规结构的聚甲基丙烯酸甲酯(PMMA).催化剂结构中空间位阻增大导致催化活性降低,空间位阻最小的C1催化活性最高[达107.8 kg/(mol Ni·h)];而空间位阻最大的C4催化活性仅为7.8 kg/(mol Ni·h).催化剂结构中给电子效应增加有利于催化活性及聚合物分子量的增加.C2催化活性为62.5 kg/(mol Ni·h),所得聚合物的分子量为5.0×104;而具有较强给电子效应的C3催化活性达到96.9 kg/(mol Ni·h),并得到更高分子量的聚合物(7.6×104).  相似文献   

4.
 采用含有分子内配位Ln←O键、茂(茚)和环辛四烯(COT)混合配体的稀土有机化合物与三乙基铝体系催化甲基丙烯酸甲酯(MMA)的聚合,可以得到高分子量(Mη>100×103),窄分子量分布(Mw/Mn<3)的聚甲基丙烯酸甲酯(PMMA). 不同的配体及稀土元素可以影响这类稀土有机化合物的催化聚合活性. 化合物(η5-MeOCH2CH2C5H4)Nd(η8-C8H8)(THF)具有较高的活性(转化率91.0%,Mη=115.2×103). 考察了催化剂和助催化剂浓度,以及聚合温度和时间对(η5-cyclo-C4H7OCH2C9H6)Dy(η8-C8H8)/AlEt3体系催化聚合反应的影响. 结果表明,最佳聚合条件为: n(MMA)∶n(催化剂)∶n(助催化剂)=1?200∶1∶5,θ=60 ℃,t=32 h. 利用核磁共振和凝胶渗透色谱等技术对聚合物进行了表征.  相似文献   

5.
侧链取代基含有氧原子的环戊二烯与双水杨醛邻环己二胺席夫碱混合配体的镧系化合物[(η5:η1-MeOCH2CH2C5H4)Ln][(μ:η-OC20H20N2O)]2[(η5-MeOCH2CH2C5H4)Ln](Ln=Sm(1),Dy(2)),[(MeOCH2CH2C5H4)2Yb]2(OC20H20N2O)(3),[(C4H7OCH2C5H4)2Dy]2(OC20H20N2O)(4)与三乙基铝体系催化甲基丙烯酸甲酯(MMA)的聚合,可以得到高分子量(粘均分子量Mη>100,000),窄分子量分布(Mw/Mn<3)的聚甲基丙烯酸甲酯(PMMA).不同茂环上的取代基及稀土元素使这类化合物形成了不同的分子结构,并且影响了它们的催化活性.化合物(3)具有较高的活性(转化率∶54.1%,Mη=287.1×103).考察了催化剂浓度,助催化剂浓度,聚合温度和时间对化合物(3)/Al(Et)3体系催化聚合反应的影响,最佳聚合条件为:60℃,24h,MMA∶催化剂∶助催化剂(摩尔比)=1000∶1∶10.利用核磁,凝胶渗透色谱仪(GPC)等对聚合物进行表征.  相似文献   

6.
合成了6种单茂稀土催化剂Cp’LnR2(THF)n(其中,Cp’=C5H5,C5Me4SiMe3;R=CH2C6H4NMe2-o,CH2SiMe3;Ln=Sc,Y,Lu;n=0或1),并以[Ph3C][B(C6F5)4]为助催化剂,甲苯为溶剂,考察催化剂结构对丁二烯聚合活性,立体选择性,催化剂利用率以及聚合物分子量和分子量分布的影响.通过1H-NMR,13C-NMR,FTIR,GPC以及DSC对聚丁二烯进行表征,结果表明,当Cp’=C5H5,R=CH2C6H4NMe2-o,Ln=Sc,n=0时,催化剂(C5H5)Sc(CH2C6H4NMe2-o)2对丁二烯聚合活性最高,可达9600 kg-polymer/mol-Sc·h,催化剂利用率为45%,聚丁二烯顺-1,4结构含量在96%~98%之间,分子量分布窄,指数在1.3左右;以甲苯或氯苯作为聚合溶剂时,聚合活性最高,聚丁二烯分子量保持窄分布,在所有溶剂中聚丁二烯顺-1,4结构含量均达到96%以上;催化剂聚合活性随温度下降而降低,而聚合物分子量分布有变窄的趋势,温度对聚丁二烯立体选择性无明显影响;当[Bd]/[Sc]摩尔比从500增加到3000时,聚合反应1 min转化率均达到100%,聚丁二烯分子量呈可控线性增大,最高达44.6×104,且均保持聚合物窄分布.DSC谱图表明聚丁二烯Tg为-107℃,当升降温速率为10 K/min时,在-63℃和-8℃附近呈现出明显的冷结晶峰和熔融峰.  相似文献   

7.
稀土配合物能使极性和非极性单体聚合[1].虽然目前已测定了几乎所有的三(环戊二烯基)稀土配合物及部分三(取代环戊二烯基)稀土配合物的晶体结构, 但有关三(茚基)稀土配合物的报道较少. 第一个三(茚基)稀土配合物是无水三氯化稀土与3倍物质的量的茚基钠C9H7Na在四氢呋喃中反应而得, 但未报道其晶体结构 [2]. 后来用同样的反应却分离出以氯为桥的二聚体离子对配合物 [Na(THF)6] [Ln(η5-C9H7)3μ(Cl)Ln(η5-C9H7)3](Ln=Nd, Sm) [3]. 无水三氯化稀土与Mg(C9H7)2或C9H7K等物质的量反应则生成非溶剂化的(C9H7)3Sm[4], 而与茚基钠和环辛四烯钾(C8H8K)以1∶2∶1物质的量比反应时, 则得到(C9H7)3Ln(THF)(Ln=Nd, Gd) [5]. Bottomley [6]曾用(C9Me7)K(七甲基茚基钾)与LnCl3(物质的量比3∶1)反应制备(C9Me7)3Nd(THF)5和(C9Me7)3Er@(THF)3, 但未报道晶体结构. 因为取代茚的空间阻碍比茚的大, 三(取代茚基)稀土配合物较难合成. 迄今未见有关单晶结构报道. 本文首次报道三(环戊基茚基)钐配合物的合成及晶体结构.  相似文献   

8.
丙烯腈 (AN)聚合通常采用自由基和阴离子聚合两种 .它们存在催化剂活性低 ,用量大等缺点 .关于丙烯腈的配位聚合研究报道则较少 .最近 ,有报道发现二价稀土化合物可以催化丙烯腈聚合 ,但催化活性较低[1 ,2 ] .本文以二茚基钇 -铝双金属配合物 (C9H7) 2 Y(μ- Et) 2 Al Et2(以下以 Y- Al代表 )为 AN聚合催化剂 ,发现它单独可以催化 AN聚合 .当外加酚钠(Ph ONa)时 ,可以大大提高聚丙烯腈 (PAN)的产率及分子量 .研究了单体浓度、催化剂浓度、温度、时间等对 AN聚合的影响 ,并对其引发机理进行了研究 .Y- Al的合成及聚合方法见文献 [3…  相似文献   

9.
二茚基稀土胺化物催化丙烯腈聚合   总被引:3,自引:0,他引:3  
用二茚基稀土胺化物Ind2LnN(i-Pr)2(Ln=Y,Yb)作为单组分催化剂催化丙烯腈聚合,研究了催化剂用量、单体浓度及聚合温度对标题化合物的催化活性和所得聚丙烯腈的分子量的影响。提高聚合发应温度可明显提高催化活性,当聚合温度达50℃,单体浓度为5.1mol  相似文献   

10.
稀土配合物能使极性和非极性单体聚合[1] .虽然目前已测定了几乎所有的三 (环戊二烯基 )稀土配合物及部分三 (取代环戊二烯基 )稀土配合物的晶体结构 ,但有关三 (茚基 )稀土配合物的报道较少 .第一个三 (茚基 )稀土配合物是无水三氯化稀土与 3倍物质的量的茚基钠 C9H7Na在四氢呋喃中反应而得 ,但未报道其晶体结构[2 ] .后来用同样的反应却分离出以氯为桥的二聚体离子对配合物[Na( THF) 6][Ln( η5- C9H7) 3μ( Cl) Ln( η5- C9H7) 3]( Ln=Nd,Sm) [3] .无水三氯化稀土与 Mg( C9H7) 2 或C9H7K等物质的量反应则生成非溶剂化的 ( C9H7…  相似文献   

11.
12.
13.
A low barrier in the reaction pathway between the double Rydberg isomer of OH(3) (-) and a hydride-water complex indicates that the former species is more difficult to isolate and characterize through anion photoelectron spectroscopy than the well known double Rydberg anion (DRA), tetrahedral NH(4) (-). Electron propagator calculations of vertical electron detachment energies (VEDEs) and isosurface plots of the electron localization function disclose that the transition state's electronic structure more closely resembles that of the DRA than that of the hydride-water complex. Possible stabilization of the OH(3) (-) DRA through hydrogen bonding or ion-dipole interactions is examined through calculations on O(2)H(5) (-) species. Three O(2)H(5) (-) minima with H(-)(H(2)O)(2), hydrogen-bridged, and DRA-molecule structures resemble previously discovered N(2)H(7) (-) species and have well separated VEDEs that may be observable in anion photoelectron spectra.  相似文献   

14.
15.
16.
17.
Summary Dichlorobis(methylsalicylato)titanium(IV) reacts with potassium or amine salts of dialkyl or diaryl dithiocarbamates in 11 and 12 molar ratios in anhydrous benzene (room temperature) or in boiling CH2Cl2 to yield mixed ligand complexes: (AcOC6H4O)2 Ti(S2CNR2)Cl (1) and (AcOC6H4O)2 Ti(S2CNR2)2 (2), R=Et, n-Pr, n-Bu, cyclo-C4H8 and cyclo-C5H10. These compounds are moisture sensitive and highly soluble in polar solvents. Molecular weight measurement in conjunction with i.r.,1H and13C n.m.r. spectral studies suggest coordination number 7 and 8 around titanium(IV) in (1) and (2) respectively.  相似文献   

18.
19.
Pure, highly explosive CF(3)C(O)OOC(O)CF(3) is prepared for the first time by low-temperature reaction between CF(3)C(O)Cl and Na(2)O(2). At room temperature CF(3)C(O)OOC(O)CF(3) is stable for days in the liquid or gaseous state. The melting point is -37.5 degrees C, and the boiling point is extrapolated to 44 degrees C from the vapor pressure curve log p = -1875/T + 8.92 (p/mbar, T/K). Above room temperature the first-order unimolecular decay into C(2)F(6) + CO(2) occurs with an activation energy of 129 kJ mol(-1). CF(3)C(O)OOC(O)CF(3) is a clean source for CF(3) radicals as demonstrated by matrix-isolation experiments. The pure compound is characterized by NMR, vibrational, and UV spectroscopy. The geometric structure is determined by gas electron diffraction and quantum chemical calculations (HF, B3PW91, B3LYP, and MP2 with 6-31G basis sets). The molecule possesses syn-syn conformation (both C=O bonds synperiplanar to the O-O bond) with O-O = 1.426(10) A and dihedral angle phi(C-O-O-C) = 86.5(32) degrees. The density functional calculations reproduce the experimental structure very well.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号