首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper is concerned with the existence of mild solutions for a class of impulsive fractional partial semilinear differential equations. Some errors in Mophou (2010) [2] are corrected, and some previous results are generalized.  相似文献   

2.
Consider the fractional differential equation
Dαx=f(t,x),  相似文献   

3.
In this article we develop an existence and uniqueness theory of variational solutions for a class of nonautonomous stochastic partial differential equations of parabolic type defined on a bounded open subset DRd and driven by an infinite-dimensional multiplicative fractional noise. We introduce two notions of such solutions for them and prove their existence and their indistinguishability by assuming that the noise is derived from an L2(D)-valued fractional Wiener process WH with Hurst parameter , whose covariance operator satisfies appropriate integrability conditions, and where γ∈(0,1] denotes the Hölder exponent of the derivative of the nonlinearity in the stochastic term of the equations. We also prove the uniqueness of solutions when the stochastic term is an affine function of the unknown random field. Our existence and uniqueness proofs rest upon the construction and the convergence of a suitable sequence of Faedo-Galerkin approximations, while our proof of indistinguishability is based on certain density arguments as well as on new continuity properties of the stochastic integral we define with respect to WH.  相似文献   

4.
Using the method of upper and lower solutions, an existence result for IVP of Riemann-Liouville fractional differential equation is studied. Also, the monotone iterative technique is developed and the existence results for maximal and minimal solutions are obtained.  相似文献   

5.
In this paper, the existence of solutions of fractional differential equations with nonlinear boundary conditions is investigated. The monotone iterative method combined with lower and upper solutions is applied. Fractional differential inequalities are also discussed. Two examples are added to illustrate the results.  相似文献   

6.
In this paper, we show the existence of a weak solution for a stochastic differential equation driven by an additive fractional Brownian motion with Hurst parameter , and a discontinuous drift. The proof of this result is based on the Girsanov theorem for the fractional Brownian motion.  相似文献   

7.
In this article, the homotopy analysis method has been applied to solve nonlinear differential equations of fractional order. The validity of this method has successfully been accomplished by applying it to find the solution of two nonlinear fractional equations. The results obtained by homotopy analysis method have been compared with those exact solutions. The results show that the solution of homotopy analysis method is good agreement with the exact solution.  相似文献   

8.
The main goal of this paper is to solve fractional differential equations by means of an operational calculus. Our calculus is based on a modified shift operator which acts on an abstract space of formal Laurent series. We adopt Weyl’s definition of derivatives of fractional order.  相似文献   

9.
Fractional calculus generalizes the derivative and antiderivative operations dn/dzn of differential and integral calculus from integer orders n to the entire complex plane. Methods are presented for using this generalized calculus with Laplace transforms of complex-order derivatives to solve analytically many differential equations in physics, facilitate numerical computations, and generate new infinite-series representations of functions. As examples, new exact analytic solutions of differential equations, including new generalized Bessel equations with complex-power-law variable coefficients, are derived.  相似文献   

10.
We present some results for the global attractivity of solutions for fractional differential equations involving Riemann-Liouville fractional calculus. The results are obtained by employing Krasnoselskii’s fixed point theorem. Similar results for fractional differential equations involving Caputo fractional derivative are also obtained by using the classical Schauder’s fixed point theorem. Several examples are given to illustrate our main results.  相似文献   

11.
12.
We study the existence of almost periodic (resp., pseudo-almost periodic) mild solutions for fractional differential and integro-differential equations in the case when the forcing term belongs to the class of Stepanov almost (resp., Stepanov-like pseudo-almost) periodic functions.  相似文献   

13.
The existence and nonexistence of periodic solutions are discussed for fractional differential equations by varying the lower limits of Caputo derivatives. The developed approach is illustrated on several examples.  相似文献   

14.
Asymptotic properties of fractional delay differential equations   总被引:1,自引:0,他引:1  
In this paper we study the asymptotic properties of d-dimensional linear fractional differential equations with time delay. We present necessary and sufficient conditions for asymptotic stability of equations of this type using the inverse Laplace transform method and prove polynomial decay of stable solutions. Two examples illustrate the obtained analytical results.  相似文献   

15.
16.
In a recent paper [Odibat Z, Momani S, Erturk VS. Generalized differential transform method: application to differential equations of fractional order, Appl Math Comput. submitted for publication] the authors presented a new generalization of the differential transform method that would extended the application of the method to differential equations of fractional order. In this paper, an application of the new technique is applied to solve fractional differential equations of the form y(μ)(t)=f(t,y(t),y(β1)(t),y(β2)(t),…,y(βn)(t)) with μ>βn>βn-1>…>β1>0, combined with suitable initial conditions. The fractional derivatives are understood in the Caputo sense. The method provides the solution in the form of a rapidly convergent series. Numerical examples are used to illustrate the preciseness and effectiveness of the new generalization.  相似文献   

17.
In this article, the existence and uniqueness of positive solution for a class of nonlinear fractional differential equations is proved by constructing the upper and lower control functions of the nonlinear term without any monotone requirement. Our main method to the problem is the method of upper and lower solutions and Schauder fixed point theorem. Finally, we give an example to illuminate our results.  相似文献   

18.
Haar wavelet operational matrix has been widely applied in system analysis, system identification, optimal control and numerical solution of integral and differential equations. In the present paper we derive the Haar wavelet operational matrix of the fractional order integration, and use it to solve the fractional order differential equations including the Bagley-Torvik, Ricatti and composite fractional oscillation equations. The results obtained are in good agreement with the existing ones in open literatures and it is shown that the technique introduced here is robust and easy to apply.  相似文献   

19.
The Banach fixed point theorem and the nonlinear alternative of Leray-Schauder type are used to investigate the existence of solutions for fractional order functional and neutral functional differential equations with infinite delay.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号