首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The extracting abilities for thorium, uranium and some fission products by five sulfoxides are given. The results show that di(2-ethylhexyl) sulfoxide (DEHSO) is not only completely miscible with kerosene, but also superior to tri-n-butyl phosphate in some properties. The extraction behavior of uranium, thorium and some fission products such as zirconium, niobium and ruthenium from aqueous nitric acid with DEHSO in kerosene has been studied over a wide range of conditions. DEHSO extracted uranium and fission products better than TBP under all conditions and is similar to TBP in extraction of thorium. A study of extraction mechanism indicates that U and Th are extracted as disolvates, whereas HNO3 is extracted as monosolvate. Extraction of the two actinides decreases with increasing temperature, indicating the extraction to be exothermic. Preliminary studies show that -ray irradiated DEHSO extracts Zr and Nb to a smaller extent than irradiated TBP in the range of 104–107 rad.  相似文献   

2.
The extraction behavior of uranium(VI), plutonium(IV) and fission products like zirconium, ruthenium and europium from 3.5M nitric acid medium with gamma-irradiated dibutyl derivatives of hexanamide (DBHA), octanamide (DBOA) and decanamide (DBDA) in dodecane has been investigated as a function of absorbed dose up to 184 MRads. The results indicate that the Kd value for extraction of uranium(VI) decreases gradually, while Kd for extraction of plutonium(IV) decreases rapidly with dose up to 35 MRads, increasing thereafter with dose, indicating synergistic effects of radiolytic products at higher doses. Ruthenium and europium are not extracted in the entire dose range up to 184 MRads, while extraction of zirconium(IV) increases steadily up to 50 MRads and increases radiply thereafter, indicating synergistic effect of radiolytic products similar to that of plutonium(IV) beyond a dose of 50 MRads. The extractability of uranium(VI) and plutonium(IV) with 1M dibutyl decanamide (DBDA) in dodecane was studied for uranium loading up to 75 mg/ml and plutonium loading up to 3 mg/ml. The percent extraction was found to vary from 91 to 71 for uranium and 95 to 89 for plutonium, respectively. Quantitative stripping of uranium can be achieved with 0.01M nitric acid and plutonium with 0.5M nitric acid and 0.05M hydroxylamine soluton in two steps from an organic phase loaded with 53.2 mg/ml of uranium.  相似文献   

3.
The separation of uranium and plutonium from oxalate supernatant, obtained after precipitating plutonium oxalate, containing ~10 g/l uranium and 30–100 mg/l plutonium in 3M HNO3 and 0.10–0.18M oxalic acid solution has been carried out. In one extraction step with 30% TBP in dodecane: ~92% of uranium and ~7% of Pu is extracted. The raffinate containing the remaining U and Pu is extracted with 0.2M CMPO+1.2 M TBP in dodecane and near complete extraction of both the metal ions is achieved. The metal ions are back extracted from organic phases using suitable stripping agents. The recovery of both the metal ions separately is >99%. The uranium species extracted into the TBP phase from the HNO3+oxalic acid medium was identified as UO2(NO3)2·2TBP.  相似文献   

4.
The extraction behavior of uranium(VI), plutonium(IV) and some fission products like zirconium(IV), ruthenium(III) and europium(III) from 3.5M nitric acid with -irradiated organic phase pre-equilibratedn-dodecane solutions of dihexyl derivatives of hexanamide (DHHA), octanamide (DHOA) and decanamide (DHDA) has been investigated as a function of absorbed dose upto 184·104 Gy. The results indicate that the extraction of uranium(VI) decreases gradually with dose upto 72·104 Gy and becomes almost constant thereafter, while, the extraction of plutonium(IV) decreases upto a dose of 20·104 Gy and then increases rapidly up to a dose of 82·104 Gy indicating synergistic effects of radiolytic products formed at higher doses. Extraction of zirconium(IV) increases gradually upto a dose of 72·104 Gy. Europium(III) does not get extracted with any of these amides in the entire dose range (0–184·104 Gy) studied, however, ruthenium shows insignificant increase in extraction with dose. The decrease inD values noticed in the case of plutonium and zirconium after the dose of 72·104 Gy which was attributed to the third phase formation and emulsification. Infrared studies confirm the final products of radiolysis as the respective amines and carboxylic acids. The degraded amide contents have been estimated by quantitative IR spectrophotometric technique. Extraction data obtained for uranium(VI) and plutonium(IV) with TBP/n-dodecane system have also been compared under similar experimental conditions.  相似文献   

5.
The extraction of Tc(VII) by the mixture of tri-n-butyl phosphate (TBP) and 2-nitrophenyl octyl ether (NPOE) has been studied. 0.2M NPOE-TBP can extract Tc(VII) effectively from 1M HNO3 and 1M NaOH solutions with distribution ratios of 57.1 and 12.3, respectively. The distribution ratio of Tc(VII) decreases with increasing (>0.5M) HNO3 concentration but increases with the increase of NaOH concentration. A pH 9 NaOH solution has proven to be suitable for Tc(VII) stripping. A simple extraction-stripping cycle can remove Tc(VII) from a sodium hydroxide solution. A more sophisticated extraction process is proposed to remove Tc(VII) from nitric acid solution because the co-extracted HNO3 prevents the direct stripping of Tc(VII) by NaOH solution of pH 9.  相似文献   

6.
Solvent extraction behaviour of Am(III) from dilute nitric acid media with sulfoxides (R2SO) in Solvesso-100 has been investigated over a wide range of conditions. Very poor extractability of Am necessitated the use of salting-out agents, viz., nitrates of Al, Mg, Ca, Li and NH 4 + . Effects of certain variables such as acidity, extractant concentration, saltingout agent, temperature etc., on metal extraction by sulfoxides have been examined systematically. For a fixed sulfoxide concentration, extraction attains a maximum value up to around 0.2–0.4M HNO3 and decreasing above 1M HNO3. In contrast, increasing the concentration of sulfoxide (0.8M DISO, 1.3M DBuSO) gives almost quantitative Am extraction up to 1M HNO3. For satisfactory extraction, di-n-octyl as well as di-n-hexyl sulfoxide are the most suitable extracting agents. Extractability of Am increases with increasing amounts of all the salting-out agents studied and their effect follows the sequence: Al3+>Mg2+>Ca2+>Li+>NH 4 + ; this is also the relative dehydrating effect of the cations. The species extracted would appear to be Am(NO3)3.3R2SO. Americium is easily stripped with 1–3M HNO3 solutions from the loaded organic phase. Extraction decreases with increasing temperature, indicating the extraction to be exothermic. Extraction from partially non-aqueous solutions was also investigated.  相似文献   

7.
The extraction of nitric acid, plutonium, uranium and fission products such as zirconium, ruthenium and europium has been investigated using di-n-hexyl sulphoxide in Solvesso-100. Results indicate that Pu(IV), U(VI), Zr(IV) and Ru NO(III) are extracted as disolvates, whereas Eu(III) is extracted as the trisolvate. The absorption spectra of the plutonium(IV) and uranium(VI) complexes extracted are similar to those of the species extracted by TBP which indicate the similarity of the species involved. Preliminary studies show that irradiated di-n-hexyl sulphoxide extracts zirconium to a smaller extent than irradiated TBP suggesting the use of long chain aliphatic sulphoxides as promising extractants for the recovery of plutonium in high radiation fields.  相似文献   

8.
Spent fuel discharged from Fast Breeder Test Reactor (FBTR) in Kalpakkam is being reprocessed by modified plutonium uranium reduction extraction (PUREX) process using 30% TBP (tributylphosphate) as extractant in the presence of heavy normal paraffin (HNP) as diluent. Partitioning of uranium (U) and plutonium (Pu) is carried out using oxalate precipitation method. Uranium oxide product obtained by this method contains appreciable amount of plutonium which has to be recovered. Recovery of plutonium from this uranium oxide product is carried out by reducing Pu to inextractable Pu(III) using hydroxyurea (HU) and then uranium is extracted into 30% TBP. A small amount of Pu which is extracted in the organic phase is stripped back to aqueous phase by scrubbing with scrubbing agent containing 0.1 M HU in 4 M nitric acid. Similarly U and Pu are co-extracted into 30% TBP and then Pu is removed by scrubbing with 0.1 M HU in 4 M nitric acid. Further decontamination from Pu is obtained in the stripping stages. By this method Pu contamination in the uranium oxide is brought from 7300 ppm to 0.4–3 ppm (wt/wt). This uranium product obtained can be handled on table top.  相似文献   

9.
Our aim was to discover a method of separating zirconium(IV) and uranium(VI) from solutions. It is known that Zr(IV) and U(VI) are effectively extracted by tertiary amines from weak acidic sulfate solutions but the possibility of extraction decreases with increasing acidity. The transition from tertiary amine to primary amine Primene JMT enables the extraction of Zr also from more acidic solution. If both Zr and U are present in an aqueous solution, Zr is extracted preferentially and only the free part of the amine can convert uranium to an extract. The separation described below was carried out by preferentially stripping zirconium from the organic phase. The application of nitrate solution (2M HNO3) to eliminate Zr from the solvent was tested. This method does not demand any special regeneration of the extraction agent and the amine nitrate, formed in the organic phase, can be used for further extraction of Zr without modification. Using this method of separation, a solution for producing pure ZrOCl2·8H2O was obtained.  相似文献   

10.
The extraction of uranium(VI) from nitric acid medium is investigated using 2-ethylhexyl phosphonic acid-mono-2-ethylhexyl ester (PC88A in dimeric form, H2A2) as extractant either alone or in combination with neutral extractants such as tri-n-butyl phosphate (TBP), trioctyl phosphine oxide (TOPO), and dioctyl sulfoxide (DOSO). The effects of different experimental parameters such as aqueous phase acidity (up to 10 M HNO3), nature of diluent [xylene, carbon tetrachloride (CCl4), n-dodecane and methyl iso-butyl ketone (MIBK)] and of temperature (303–333 K) on the extraction behavior of uranium were investigated. Synergistic extraction of uranium was observed between 0.5 and 6 M HNO3. Use of MIBK as diluent was also studied. Temperature variation studies using PC88A as extractant showed exothermic nature of extraction process. Studies were carried out to optimize the conditions for the recovery of uranium from the raffinate generated during the purification of uranium from nitric acid medium. Inductively Couple Plasma Atomic Emission Spectroscopy (ICP-AES) and Energy Dispersive X-Ray Fluorescence (EDXRF) techniques were employed for analysis of uranium in equilibrated samples.  相似文献   

11.
The solvent extraction of zirconium from HCl solutions by dipentyl sulphoxide (DPSO), dioctyl sulphoxide (DOSO), tributyl phosphate (TBP), and their mixtures in various solvents has been studied. At a given H+ strength, the extraction coefficient η of the metal increases with an increase in Cl activity whereas it is almost independent of H+ at constant Cl. Under otherwise identical conditions, η increases with an increase in the extractant concentration but is virtually independent of the metal ion concentration over a wide range. The species extracted are ZrCl4·DPSO, ZrCl4·DOSO, and ZrCl4·2TBP. In the case of mixtures, the slope of the log η−log M extractant plot for one component decreases with an increase in the concentration of the second component, the lines crossing at a common point. Extraction is favoured by solvents of low dielectric constant. It is possible to separate zirconium from thorium and uranium by solvent extraction with sulphoxides.  相似文献   

12.
The primary purpose of this study was to understand the alpha radiolytic degradation behavior of N,N-dihexyl octanamide (DHOA) vis a vis tributyl phosphate (TBP) solutions in n-dodecane under plutonium loading conditions. These studies were carried out as a function of dose on different Pu loaded samples (containing 0.002-10 g/L Pu) from 4 M HNO3 medium. These Pu loaded solutions were evaluated for stripping behavior by contacting with 0.5 M NH2OH at 0.5 M HNO3 solutions. Organic phase analysis was carried out by gas chromatography (GC) and by visible spectrophotometry. These studies clearly indicated that Pu stripping becomes difficult with increased dose in the case of TBP system. On the other hand, no such problem was observed in DHOA system during stripping of plutonium, thereby indicating that DHOA is a promising candidate for the reprocessing of high burn up Pu rich spent fuels.  相似文献   

13.
The advanced separation extraction process based on tri-n-butyl phosphate organic phase called UREX is being developed to separate uranium from fission products and other actinides, and the acetohydroxamic acid (AHA) is employed to reduce and complex plutonium and neptunium in order to decrease their distribution to the TBP-organic phase. In this study, the extraction of uranium was performed from various aqueous matrices with different concentrations of HNO3, LiNO3, and AHA. Extraction of uranium increases with increasing both initial HNO3 and total nitrate concentration. UV-VIS spectrophotometry confirmed that AHA is involved in the complex of uranium with TBP.  相似文献   

14.
An accurate and reliable analytical technique of uranium isotopes in highly contaminated soil samples was developed and applied to the IAEA reference samples. The conventional TBP method of uranium isotopes is insufficient to completely purify uranium from actinides such as plutonium and americium isotopes in highly contaminated soil samples. For overcoming the demerits of the conventional TBP extraction method, sample materials were decomposed with HNO3 and HF, and uranium isotopes were purified by TBP extraction and anion exchange columns and extraction chromatography. Among the purifying methods of uranium, with a TRU Spec resin column after TBP solvent extraction, uranium was completely separated from the radionuclides in a highly contaminated samples. With the modified TBP extraction method, it was found that the concentrations of uranium isotopes were consistent with the reference values reported by the IAEA.  相似文献   

15.
A solvent extraction process is proposed to recover uranium and thorium from the crystal waste solutions of zirconium oxychloride. The extraction of iron from hydrochloride medium with P350, the extraction of uranium from hydrochloride with N235, and the extraction of thorium from the mixture solutions of nitric acid and the hydrochloric acid with P350 was investigated. The optimum extraction conditions were evaluated with synthetic solutions by studying the parameters of extractant concentration and acidity. The optimum separation conditions for Fe (III) are recognized as 30% P350 and 4.5 to 6.0 M HCl. The optimum extraction conditions for U (VI) are recognized as 25% N235 and 4.5 to 6.0 M HCl. And the optimum extraction conditions for Th (VI) are recognized as 30% P350 and 2.5 to 3.5 M HNO3 in the mixture solutions. The recovery of uranium and thorium from the crystal waste solutions of zirconium oxychloride was investigated also. The results indicate that the recoveries of uranium and thorium are 92 and 86%, respectively.  相似文献   

16.
Uranium from different uranium oxide matrices was extracted with tri-n-butyl phosphate–nitric acid (TBP–HNO3) adduct using supercritical carbon dioxide (SC CO2). While 30 min dissolution time at 323 K was sufficient for U3O8 and UO2 powder, UO2 granule (at 333 K) and crushed green pellet (at 353 K) required 40 min. Crushed sintered pellet required 60 min at 353 K for complete dissolution. Influence of various experimental parameters such as temperature, pressure, volume of TBP–HNO3 adduct, acidity of nitric acid used for preparing TBP–HNO3 adduct and extraction time on uranium extraction efficiency was also investigated. For UO2 powder, temperature of 323 K, pressure of 15.2 MPa, 1 mL TBP–HNO3 adduct, 10 M nitric acid and 30 min extraction time was found to be optimum. ~70% uranium extraction efficiency was obtained on extraction with SC CO2 alone which increased to 90% with the addition of 2.5% TBP in SC CO2 stream. Extraction efficiency was found to vary linearly with TBP percentage and nearly complete uranium extraction (~99%) was observed with 20% TBP. Nearly complete extraction was also achieved with addition of 2.5% thenoyltrifluoroacetylacetone (TTA) in methanol. The optimized procedure was extended to remove uranium from simulated tissue paper waste matrix smeared with uranium oxide solids.  相似文献   

17.
Three production routes of the preparation of a solid extractant based on tributylphosphate (TBP) embedded in the polyacrylonitrile matrix (PAN) have been studied. The method of direct PAN coagulation with TBP was found to be not viable due to the significant TBP solubility in the coagulation bath. The most suitable PAN-TBP solid extractant was prepared by the well-known impregnation method of ready-made neat PAN beads. The kinetics of uranium extraction from 3 mol L?1 HNO3, the effect of nitrate and nitric acids concentrations on the value of weight distribution coefficients D g as well as the uranium “extraction isotherm” were determined for this material. Uranium extraction was rather fast, approximately 1 h was sufficient for the equilibrium achievement. Capacity for the uranium uptake, measured in batch experiments on PAN-TBP for 0.048 mol L?1 of uranium in 3 mol L?1 nitric acid, was found to be q = 0.363 mmol g?1 (58 % of the theoretical capacity). It was concluded that PAN-TBP material behaves like TBP in liquid–liquid extraction. Extraction capacity determined in column experiments was lower (by about 23 %) than expected from the “extraction isotherm” due to the TBP leaching out of the column. The thus prepared material is therefore not very suitable for multicycle extraction and stripping and can be used once, particularly for the analytical purposes.  相似文献   

18.
The extraction of plutonium(IV), uranium(VI), zirconium(IV), europium(III) and ruthenium(III) with -pre-irradiated n-dodecane solutions of methylbutyl substituted hexanamide (MBHA), octanamide (MBOA) and decanamide (MBDA) from 3.5M HNO3 has been studied as a function of absorbed dose up to 184×104 Gray. The distribution ratios (Kd) of uranium(VI) decreased gradually up to a dose of 50×104 Gray and became almost constant thereafter, while ruthenium(III) and europium(III) were not extracted in the entire dose range studied. The Kd values of Pu(IV) decreased gradually up to 10×104 Gray, for MBOA, and 30×104 Gray for MBHA and MBDA and then increased up to a dose of 72×104 Gray, indicating the synergistic effect of radiolytic products at higher doses. The extraction of zirconium(IV) was found to increase gradually up to 72×104 Gray. However, the steep fall in Kd values of plutonium(IV), zirconium(IV) beyond a dose of 72×104 Gray was atrributed to third phase formation. The radiolytic degradation of amides was monitored by quantitative IR spectroscopy and was found to follow the order MBOA>MBDA>MBHA at 184×104 Gray having the amines and carboxylic acids as the main radiolytic products.  相似文献   

19.
Quantitative extraction of uranium(VI) is observed from 0.2M HCl by 5% (v/v) Cyanex 301. The extraction decreases with increasing acid concentration. Mixtures of Cyanex 301 with tri-n-butyl phosphate (TBP), didecyl sulfoxide (DDSO) and Alamine 308 result in significant synergism in the extraction process, where a species of the type UO2R2. L is proposed to be extracted [RH=Cyanex 301 and L=TBP, DDSO or Alamine 308]. Significant extraction of uranium(VI) by 5% (v/v) Alamine 308 is observed at and above 2M HCl, which increases with further increase in acidity attaining a maximum at 6M, after which a slight decrease in extration is observed. Mixtures of Alamine 308 with TBP or DDSO result in a synergism, where a species of the type (R 3 NH)2 UO2Cl4. Lis extracted. [R 3 N=Alamine 308, L=TBP or DDSO]. Mixtures of Alamine 308 and Cyanex 301 at 2M HCl result in a profound antagonism in the extraction of uranium(VI).  相似文献   

20.
Summary A systematic study on the extraction of U(VI) from nitric acid medium by tri-n-butylphosphate (TBP) dissolved in a non-traditional diluent namely 1-butyl-3-methylimidazolium hexafluorophosphate (bmimPF6) ionic liquid (IL) is reported. The results are compared with those obtained using TBP/n-dodecane (DD). The distribution ratio for the extraction of U(VI) from nitric acid by 1.1M TBP/bmimPF6 increases with increasing nitric acid concentration. The U(VI) distribution ratios are comparable in the nitric acid concentration range of 0.01M to 4M, to the ratios measured using 1.1M TBP/DD. In contrast to the extraction behavior of TBP/DD, the D values continued to increase with the increase in the concentration of nitric acid above 4.0M. The stoichiometry of uranyl solvate extracted by 1.1M TBP/IL is similar to that of TBP/DD system, wherein two molecules of TBP are associated with one molecule of uranyl nitrate in the organic phase. Ionic liquid alone also extracts uranium from nitric acid, albeit to a small extent. The exothermic enthalpy accompanying the extraction of U(VI) in TBP/bmimPF6 decreases with increasing nitric acid and with TBP concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号