首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of die flow variables on the stability of isothermal melt spinning has been studied, both theoretically and experimentally. A die flow analysis provides the boundary conditions for a differential treatment of the spinline, both as a steady flow problem and as a linear stability problem. From the latter, one can predict the onset of draw resonance as a function of draw ratio, certain rheological parameters, and the stresses in the die. The experimental materials were two commercial polypropylenes and the apparatus consisted of a short (1.5–6 cm) isothermal spinning chamber; the agreement with theory was quite satisfactory. In most cases, high shear rates in the die (and subsequent high die swells) decrease the spinline stability but the magnitude of this interaction depends on many variables. In general, there is a high propensity for draw resonance (or ductile breakage) when the spinline is operating under conditions of severe thinning in a rheological sense.  相似文献   

2.
The elongational behaviour of polyethylene samples having different molecular structure has been tested. Elongational viscosity measurements have been carried out using the isothermal melt spinning technique. The extensional behaviour of the different samples is analysed as a function of total strain. The effect of long-chain branching on elongational viscosities is described. A comparison is presented between elongational viscosity and melt strength data.Some of the results reported here were presented at the VIIIth International Congress on Rheology, Naples, September 1–5, 1980, cf. [16].  相似文献   

3.
A model and simulation method are developed for two-dimensional non-isothermal melt spinning of a visco elastic melt. The visco elastic stress is evaluated from a non-isothermal Giesekus constitutive equation developed by application of the pseudo-time method to the isothermal form of the model [J. Non-Newt. Fluid Mech. (2001)]. The crystallization kinetics is described with the model proposed by Nakamura et al. [J. Appl. Polym. Sci. 17 (1973) 1031], whereas the crystallization rate, which is a function of both temperature and molecular orientation, is evaluated according to the equation proposed by Ziabicki [Fundamentals of Fiber Formation, Wiley, New York, 1976]. The set of non-linear governing equations is solved by using the DEVSS-G/SUPG finite element method. Melt spinning is simulated for two different polymers: amorphous polystyrene and fast-crystallizing Nylon-6,6. The analysis demonstrates that although the kinematics in the thread-line are approximately one-dimensional, the radially non-uniform thermal history, caused by the leading order variation of the temperature gradient ∂T/∂r, gives rise to radially non-uniform visco elastic stresses. This stress gradient results in radially non-uniform molecular orientation and a strong radial variation in crystallinity for Nylon-6,6. The radially non-uniform stress profiles obtained from the simulations are in good agreement with experimental results for melt spinning of polystyrene. Simulations of Nylon-6,6 show that the thermally-induced crystallization depends strongly on the choice of the Avrami index n, and a sharp increase in crystallinity due to stress-induced crystallization is predicted only when the molecules are highly oriented in the drawing direction at high drawing speeds. The significant influences of visco elasticity, air drag, and operating conditions on non-isothermal melt spinning dynamics also are predicted.  相似文献   

4.
In this work, melt spinning experiments were tentatively used for the determination of the elongational viscosity of polymer melts at different levels of tensile strain and strain rate. The materials examined were two high-density polyethylene grades for blow moulding with similar number-average molecular mass but different polydispersity index. The data from melt spinning tests were compared with transient extensional viscosity data obtained by uniform isothermal tensile tests, performed by means of an extensional rheometer, as well as with those produced by converging flow tests (Cogswell model). The results showed that for high strain and strain rate levels, the melt spinning experiments provide elongational viscosity data quite close to the transient extensional viscosity values obtained from the tensile tests.  相似文献   

5.
The effect of convective flow on a spherical crystal growth in the undercooled melt with a moderate far field flow is studied. The asymptotic solution of the evolution of the interface of the spherical crystal growth is obtained by the matched asymptotic expansion method. The analytic result shows that the convective flow in the undercooled melt has a strong effect on the evolution of spherical crystal growth. The convective flow induced by the far field flow makes the interface of the growing spherical crystal enhance its growth velocity in the upstream direction of the far field flow and inhibit growth in the downstream direction, and the interface of the decaying spherical crystal further decay in the upstream direction and inhibit decay in the downstream direction. The maximum growth velocity of the interface of the spherical crystal influenced by the far field flow is obtained.  相似文献   

6.
A method is described for obtaining viscoelastic flow solutions, based upon time-integral constitutive equations, using a general purpose CFD package. The method is general enough to be applied to any available software that has rudimentary input and output facilities and can solve a Stoke's flow problem. From this basis, flexibility of choice of constitutive equation and computational techniques is available. The method is presented in a form appropriate for solving both planar and axisymmetric flows. Delaunay triangulation is used to reconstruct a mesh for external code, and stress computation procedures are performed on this mesh. The method has only two particular requirements for the CFD package used – it must be able to output nodal values (of position and velocity) to file and it must be able to read body-forces from a file. Two methods of velocity adjustment were compared: an incremental method and a method whereby the viscoelastic stresses were incorporated directly as body-forces. Results and convergence from the two methods were found to be essentially identical, hence the direct body-force method (which is considerably easier to implement) is described in detail. The method is applied to a well-known flow problem of LDPE melt through a 4 : 1 abrupt contraction axisymmetric die. Convergence was obtained up to nearly the highest value of apparent shear rate for which published simulation results are available. Quantitative results for vortex strength, vortex opening angle and Couette correction are presented which are compared with earlier work on the problem using other methods. Agreement is generally good, giving confidence in the method. Simulations of planar flows of the same melt are performed: a decreasing corner vortex was observed. This phenomenon has been observed experimentally for flows of other substances, but is not expected for flows of LDPE melt. A parametric study of a critical strain hardening parameter is conducted to help explain the cause of the results.  相似文献   

7.
The mechanics of isothermal melt spinning are determined for a viscoelastic liquid with constant physical properties but with a spectrum of relaxation times. The relaxation time distribution leads to higher forces and more linear velocity profiles than would be obtained for a Maxwellian material of the same mean properties in shear. This result explains the observation of several earlier studies that relaxation times inferred with a Maxwell-type model from spinning experiments are larger than those measured rheogoniometrically.  相似文献   

8.
Numerical simulations have been undertaken for the creeping entry flow of a well-characterized polymer melt (IUPAC-LDPE) in a 4:1 axisymmetric and a 14:1 planar contraction. The fluid has been modeled using an integral constitutive equation of the K-BKZ type with a spectrum of relaxation times (Papanastasiou–Scriven–Macosko or PSM model). Numerical values for the constants appearing in the equation have been obtained from fitting shear viscosity and normal stress data as measured in shear and elongational data from uniaxial elongation experiments. The numerical solutions show that in the axisymmetric contraction the vortex in the reservoir first increases with increasing flow rate (or apparent shear rate), goes through a maximum and then decreases following the behavior of the uniaxial elongational viscosity. For the planar contraction, the vortex diminishes monotonically with increasing flow rate following the planar extensional viscosity. This kinematic behavior is not in agreement with recent experiments. The PSM strain-memory function of the model is then modified to account for strain-hardening in planar extension. Then the vortex pattern shows an increase in both axisymmetric and planar flows. The results for planar flow are compared with recent experiments showing the correct trend.  相似文献   

9.
Isothermal melt, fiber-spinning was recently analyzed by means of a nonlinear, integral, constitutive equation that incorporates shear history effects, spectrum of relaxation times, shear-thinning, and extension thinning or thickening when either the drawing force or the draw ratio is specified. The predictions agreed with experimental data on spinning of polystyrene, low-density polyethylene, and polypropylene melts. The predicted apparent elongational viscosity along the threadline (which, as shown in this work, must be identical to that measured experimentally by fiber spinning type of elongational rheometers) is compared with the true elongational viscosity predicted by the same constitutive equation under well-defined experimental conditions of constant extension rate, independent of any strain history. It is concluded that the apparent elongational viscosity, as measured by fiber-spinning, approaches the true elongational viscosity at low Weissenberg numbers (defined as the product of the liquid's relaxation time multiplied by the extension rate). At moderate Weissenberg numbers, the two viscosities may differ by an order of magnitude and their difference grows even larger at high Weissenberg numbers.  相似文献   

10.
Extensive experimental data on the birefringence in converging and diverging flows of a polymeric melt have been obtained. The birefringence and pressure drop measurements were carried out in working cells of planar geometry having different contraction angles and contraction ratios. For investigation of diverging or abrupt expansion flow, the direction of flow in the cells was reversed. The theoretical predictions are based upon the Leonov constitutive equation and a finite element scheme with streamwise integration.In contrast to Newtonian and second-order fluids, viscoelastic fluids at high shear rates show significant differences in pressure drop and birefringence (i.e. stresses) in converging and diverging flows. For a constant flow rate, the pressure drop is higher and the birefringence smaller in diverging flows than in converging flows. This difference increases with increasing flow rate. Further, for the same contraction ratio but different contraction angles, the birefringence maximum increases considerably with contraction angle. In addition, an increase in contraction ratio has the same effect.The viscoelastic constitutive equation of Leonov has been shown to describe all the above viscoelastic effects observed in the experiments. In general, a reasonable agreement between theory and experiment has been obtained, which shows the usefulness of the Leonov model in describing actual flows.  相似文献   

11.
A simulation of planar 2D flow of a viscoelastic fluid employing the Leonov constitutive equation has been presented. Triangular finite elements with lower-order interpolations have been employed for velocity and pressure as well as the extra stress tensor arising from the constitutive equation. A generalized Lesaint–Raviart method has been used for an upwind discretization of the material derivative of the extra stress tensor in the constitutive equation. The upwind scheme has been further strengthened in our code by also introducing a non-consistent streamline upwind Petrov–Galerkin method to modify the weighting function of the material derivative term in the variational form of the constitutive equation. A variational equation for configurational incompressibility of the Leonov model has also been satisfied explicitly. The corresponding software has been used to simulate planar 2D entrance flow for a 4:1 abrupt contraction up to a Deborah number of 670 (Weissenberg number of 6·71) for a rubber compound using a three-mode Leonov model. The predicted entrance loss is found to be in good agreement with experimental results from the literature. Corresponding comparisons for a commercial-grade polystyrene, however, indicate that the predicted entrance loss is low by a factor of about four, indicating a need for further investigation. © 1997 by John Wiley & Sons, Ltd.  相似文献   

12.
The unsteady laminar boundary-layer flow over an impulsively started translating and spinning isothermal body of revolution in the presence of buoyancy force and magnetic field applied normal to the surface are investigated. Velocity components and temperature are obtained as series of functions in powers of time. Leading and first order functions are obtained analytically and second order functions are determined numerically. The general results are applied to a sphere to investigate the effects of magnetic field and buoyancy force on the velocity and temperature fields and the onset of separation. The magnetic field and buoyancy force are more effective for small rotational speeds and the presence of magnetic field retards the onset of separation. The effect of magnetic field on the temperature field and surface heat flux is weak, indirect and through the velocity field. The magnetic field is observed to initially increase the surface heat flux on the upstream face of the sphere and decrease it on the downstream face.  相似文献   

13.
Extension of thin non-uniform filaments of Newtonian and power-law fluids was fond to be governed by the classical wave equation, when inertia, surface tension, air drag and gravitational pull are negligible and the filaments are isothermal. The extension can either be one-shot transient stretching or transients in continuous drawing. Several simple transients in melt spinning were discussed as solutions of the classical wave equation with the phenomenon of wave reflection found to occur at the spinneret. The sustained oscillation of draw resonance encountered in unstable melt spinning was found to be mathematically equivalent to a repetitive whip lashing movement of a string under tension.  相似文献   

14.
Evaluation of wall slip phenomena during the horizontal pipeline flow of air/lubricating grease mixtures was investigated. With this aim, pressure drop measurements have been carried out along pipelines with different diameter and roughness. A modified Jastrzebski's equation for the slip velocity, based on the introduction of the relative roughness, has been used to correct wall slip effects for a lithium lubricating grease/air system. This expression has been introduced in the classical Rabinowitsch–Mooney treatment and applied to the superficial liquid velocity instead of the single-phase average velocity following a single-phase treatment analogy. Thus, the non-slip flow curve data for the two-phase mixture were obtained from roughened pipes and compared with those obtained from pipes with smooth internal surfaces. The effect of air on the extension of wall slip has been established as a function of air flow rate. Thus, the consideration of the reduction of the wetted pipe surface as air is injected allows an adequate explanation of this phenomenon, confirmed by the reduction of the effective slip contribution on the observed apparent shear rate. A power-law relationship between the slip velocity and the wall shear stress has been deduced, although this tends asymptotically to linearity as air flow rate is increased.  相似文献   

15.
The gross melt fracture defect is related to the flow instabilities developed in the contraction region. To mitigate these upstream instabilities, a convergent radial flow in the die entrance has been created. In fact, the ultimate objective of the present work is to examine the effect of the clearance width of radial flow on the appearance and development of gross melt fracture defect. So, capillary rheometer experiments were performed with linear polydimethylsiloxane (PDMS) oil.As for the influence of radial flow width on the morphology of gross melt fracture defect, extrudate photographs show that this imperfection can be mitigated since its frequency is higher and amplitude smaller when the gap of radial flow decreases. Such results may be related both to shear and elongational components of radial flow. Actually, when gap width is very small compared to the external diameter of radial flow, shear deformations become more enhanced with respect to the elongational deformations and thus the helical gross melt fracture becomes more like a surface defect than volume defect.  相似文献   

16.
分别从固体及流体导热的能量方程出发,导出破碎岩体非等温渗流的能量本构方程, 结合渗流的连续性方程、运动方程、状态方程等建立了破碎岩体非等温渗流的一维非线性动力学方程组;结合Mathcad软件计算得到了系统的无量纲化平衡态, 利用逐次亚松弛迭代法分析了对应于不同参数时平衡态的稳定性;指出非等温渗流系统存在鞍结分岔及折叠突变, 与等温渗流相比, 考虑温度场的破碎岩体渗流动力系统更容易发生渗流突变.   相似文献   

17.
The nonlinear viscoelastic properties of a fairly large class of polymeric fluids can be described with the factorable single integral constitutive equation. For this class of fluids, a connection between the rheological behaviour in different flow geometries can be defined if the strain tensor (or the damping function) is expressed as a function of the invariants of a tensor which describes the macroscopic strain, such as the Finger tensor. A number of these expressions, proposed in the literature, are tested on the basis of the measuring data for a low-density polyethylene melt. In the factorable BKZ constitutive equation the strain-energy function must be expressed as a function of the invariants of the Finger tensor. The paper demonstrates that the strain-energy function can be calculated from the simple shear and simple elongation strain measures, if it is assumed to be of the shape proposed by Valanis and Landel. The measuring data for the LDPE melt indicate that the Valanis-Landel hypothesis concerning the shape of the strainenergy function is probably not valid for polymer melts.  相似文献   

18.
The gas-liquid flow inside a circular, isothermal column reactor with a vertical axis has been studied using numerical simulations. The flow is assumed to be in the laminar, bubbly flow regime which is characterized by a suspension of discrete air bubbles in a continuous liquid phase such as glycerol water. The mathematical formulation is based on the conservation of mass and momentum principle for the liquid phase. The gas velocity distribution is calculated via an empirically prescribed relative velocity as a function of void fraction. The interface viscous drag forces are prescribed empirically. For some cases a profile shape is assumed for the void ratio distribution. The influence of various profile shapes is investigated. The results are compared with those where the void ratio distribution is calculated from the conservation of mass equation. The mathematical model has been implemented by modifying a readily available computer code for single-phase newtonian fluid flows. The numerical discretization is based on a finite volume approach. The predictions show a good agreement with measurements. The circulation pattern seems not to be so sensitive to the actual shape of the void fraction profiles, but the inlet distribution of it is important. A significantly different flow pattern results when the void fraction distribution is calculated from the transport equation, as compared to those with a priori prescribed profiles. When the void fraction is uniformly distributed over the whole distributor plate, no circulation is observed. Calculations also show that even the two-phase systems with a few discrete bubbles can be simulated successfully by a continuum model.  相似文献   

19.
The effect of polymer stress diffusion in the unbounded flow past a sedimenting, freely rotating, rigid sphere subject to shear in a plane perpendicular to the direction of sedimentation is investigated analytically. Steady state, creeping, incompressible, and isothermal flow is assumed. For viscoelastic fluids following the Oldroyd-B constitutive model, three-dimensional results for the velocity vector, pressure, and viscoelastic extra-stress tensor are derived by including an artificial diffusion term in the constitutive equation and using regular perturbation theory with the small parameter being the Deborah number. The analytical solution reveals that the influence of the stress diffusion term on the results may be significant (and sometimes unexpected) and strongly depends on the magnitude of the dimensionless diffusion coefficient. For instance, it is shown that the critical Deborah number, below which a physical solution arises, decreases with the increase in the diffusion coefficient. Also, comparison against simulation results from the literature shows excellent agreement up to shear Weissenberg number (defined as the product of the imposed shear rate with the single relaxation time of the fluid) approximately equal to unity.  相似文献   

20.
In this paper visualisation and direct velocity profile measurement experiments for a branched polypropylene melt in a 10:1 axisymmetric contraction demonstrate the onset of wall slip. Video processing of the flow shows the formation of vortices and their diminution with increasing flow rate. Numerical simulations using a multimode K-BKZ viscoelastic and a purely viscous (Cross) model—both of them incorporating a nonlinear slip law—were used to predict the flow kinematics and dynamics as well as to deduce the slip velocity function by performing fitting to the velocity profiles. It was found that the numerical predictions agree well with the experimental results for the velocity profiles, and vortex formation, growth and reduction. It is suggested that such experiments (visualisation of entrance flow and direct velocity profile measurement) can be useful in evaluating the validity of constitutive equations and slip laws in the flow of polymer melts through processing equipment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号