首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The feasibility of describing ordered dislocation networks in crystals in terms of approaches inherent in the percolation theory is investigated theoretically. The free energy of dislocation networks forming clusters is calculated by the methods of the percolation theory using the Ising and Potts models and the Onsager solution.  相似文献   

2.
To understand the origin of the dynamical transition, between high-temperature exponential relaxation and low-temperature nonexponential relaxation, that occurs well above the static transition in glassy systems, a frustrated spin model, with and without disorder, is considered. The model has two phase transitions, the lower being a standard spin glass transition (in the presence of disorder) or fully frustrated Ising (in the absence of disorder), and the higher being a Potts transition. Monte Carlo results clarify that in the model with (or without) disorder the precursor phenomena are related to the Griffiths (or Potts) transition. The Griffiths transition is a vanishing transition which occurs above the Potts transition and is present only when disorder is present, while the Potts transition which signals the effect due to frustration is always present. These results suggest that precursor phenomena in frustrated systems are due either to disorder and/or to frustration, giving a consistent interpretation also for the limiting cases of Ising spin glass and of Ising fully frustrated model, where also the Potts transition is vanishing. This interpretation could play a relevant role in glassy systems beyond the spin systems case.  相似文献   

3.
We consider independent percolation, Ising and Potts models, and the contact process, on infinite, locally finite, connected graphs. It is shown that on graphs with edge-isoperimetric Cheeger constant sufficiently large, in terms of the degrees of the vertices of the graph, each of the models exhibits more than one critical point, separating qualitatively distinct regimes. For unimodular transitive graphs of this type, the critical behaviour in independent percolation, the Ising model and the contact process are shown to be mean-field type. For Potts models on unimodular transitive graphs, we prove the monotonicity in the temperature of the property that the free Gibbs measure is extremal in the set of automorphism invariant Gibbs measures, and show that the corresponding critical temperature is positive if and only if the threshold for uniqueness of the infinite cluster in independent bond percolation on the graph is less than 1. We establish conditions which imply the finite-island property for independent percolation at large densities, and use those to show that for a large class of graphs the q-state Potts model has a low temperature regime in which the free Gibbs measure decomposes as the uniform mixture of the q ordered phases. In the case of non-amenable transitive planar graphs with one end, we show that the q-state Potts model has a critical point separating a regime of high temperatures in which the free Gibbs measure is extremal in the set of automorphism-invariant Gibbs measures from a regime of low temperatures in which the free Gibbs measure decomposes as the uniform mixture of the q ordered phases. Received: 27 March 2000 / Accepted: 7 December 2000  相似文献   

4.
Monte Carlo simulation studies of percolation transition in a surface reaction model describing the oxidation of carbon mono-oxide on a catalytic surface are presented. The percolation transition for adsorbed oxygen atoms occurs below the poisoning transition where carbon mono-oxide completely covers the surface of the catalyst and takes place for an oxygen coverage of about 0.525 which is close to the percolation transition in an Ising lattice gas with nearest-neighbor attractive interactions. In several respects the oxygen clusters near the percolation threshold resemble those of the Ising lattice gas near its critical point.  相似文献   

5.
We study the critical behavior of certain two-parameter families of correlated percolation models related to the Ising model on the triangular and square lattices, respectively. These percolation models can be considered as interpolating between the percolation model given by the + and – clusters and the Fortuin-Kasteleyn correlated percolation model associated to the Ising model. We find numerically on both lattices a two-dimensional critical region in which the expected cluster size diverges, yet there is no percolation.  相似文献   

6.
We rigorously establish the existence of an intermediate ordered phase in one-dimensional 1/|x–y|2 percolation, Ising and Potts models. The Ising model truncated two-point function has a power law decay exponent which ranges from its low (and high) temperature value of two down to zero as the inverse temperature and nearest neighbor coupling vary. Similar results are obtained for percolation and Potts models.Alfred P. Sloan Research Fellow. Research supported in part by NSF Grants No. PHY-8706420 and PHY-8645122Research supported in part by NSF Grant No. DMS-8514834 and AFOSR Contract F49620-86-C0130 at the Arizona Center for Math. Sciences  相似文献   

7.
A relation between a class of stationary points of the energy landscape of continuous spin models on a lattice and the configurations of an Ising model defined on the same lattice suggests an approximate expression for the microcanonical density of states. Based on this approximation we conjecture that if a O(n) model with ferromagnetic interactions on a lattice has a phase transition, its critical energy density is equal to that of the n=1 case, i.e., an Ising system with the same interactions. The conjecture holds true in the case of long-range interactions. For nearest-neighbor interactions, numerical results are consistent with the conjecture for n=2 and n=3 in three dimensions. For n=2 in two dimensions (XY model) the conjecture yields a prediction for the critical energy of the Bere?inskij-Kosterlitz-Thouless transition, which would be equal to that of the two-dimensional Ising model. We discuss available numerical data in this respect.  相似文献   

8.
Bond percolation on a finite lattice is studied by looking at the Kac mean field model. The investigation utilizes the one-state Potts model connection established by Kasteleyn and Fortuin. To deal with special problems associated with the finite extent of the system we re-cast the partition function, which allows us to investigate the percolation transition in detail. This fundamental new formulation clears up certain ambiguities present in previous treatments and indicates a possible new direction in the study of other replica-type models.  相似文献   

9.
We consider the general p-state Potts model on random networks with a given degree distribution (random Bethe lattices). We find the effect of the suppression of a first order phase transition in this model when the degree distribution of the network is fat-tailed, that is, in more precise terms, when the second moment of the distribution diverges. In this situation the transition is continuous and of infinite order, and size effect is anomalously strong. In particular, in the case of p = 1, we arrive at the exact solution, which coincides with the known solution of the percolation problem on these networks.Received: 3 December 2003, Published online: 17 February 2004PACS: 05.10.-a Computational methods in statistical physics and nonlinear dynamics - 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion - 05.50. + q Lattice theory and statistics (Ising, Potts, etc.) - 87.18.Sn Neural networks  相似文献   

10.
At the critical point in two dimensions, the number of percolation clusters of enclosed area greater than A is proportional to A –1, with a proportionality constant C that is universal. We show theoretically (based upon Coulomb gas methods), and verify numerically to high precision, that . We also derive, and verify to varying precision, the corresponding constant for Ising spin clusters, and for Fortuin–Kasteleyn clusters of the Q = 2, 3 and 4-state Potts models.  相似文献   

11.
Cardy J 《Physical review letters》2000,84(16):3507-3510
Nonlocal twist operators are introduced for the O(n) and Q-state Potts models in two dimensions which count the numbers of self-avoiding loops (respectively, percolation clusters) surrounding a given point. Their scaling dimensions are computed exactly. This yields many results: for example, the number of percolation clusters which must be crossed to connect a given point to an infinitely distant boundary. Its mean behaves as (1/3sqrt[3] pi) |ln( p(c)-p)| as p-->p(c)-. As an application we compute the exact value sqrt[3]/2 for the conductivity at the spin Hall transition, as well as the shape dependence of the mean conductance in an arbitrary simply connected geometry with two extended edge contacts.  相似文献   

12.
《Nuclear Physics B》1995,450(3):730-752
In a recent paper [C. Baillie, D.A. Johnston and J.-P. Kownacki, Nucl. Phys. B 432 (1994) 551] we found strong evidence from simulations that the Ising antiferromagnet on “thin” random graphs — Feynman diagrams — displayed a mean-field spin-glass transition. The intrinsic interest of considering such random graphs is that they give mean-field theory results without long-range interactions or the drawbacks, arising from boundary problems, of the Bethe lattice. In this paper we reprise the saddle-point calculations for the Ising and Potts ferromagnet, antiferromagnet and spin glass on Feynman diagrams. We use standard results from bifurcation theory that enable us to treat an arbitrary number of replicas and any quenched bond distribution. We note the agreement between the ferromagnetic and spin-glass transition temperatures thus calculated and those derived by analogy with the Bethe lattice or in previous replica calculations.

We then investigate numerically spin glasses with a ±J bond distribution for the Ising and Q = 3, 4, 10, 50 state Potts models, paying particular attention to the independence of the spin-glass transition from the fraction of positive and negative bonds in the Ising case and the qualitative form of the overlap distribution P(q) for all of the models. The parallels with infinite-range spin-glass models in both the analytical calculations and simulations are pointed out.  相似文献   


13.
Cluster molecular field approximations represent a substantial progress over the simple Weiss theory where only one spin is considered in the molecular field resulting from all the other spins. In this work we discuss a systematic way of improving the molecular field approximation by inserting spin clusters of variable sizes into a homogeneously magnetised background. The density of states of these spin clusters is then computed exactly. We show that the true non-classical critical exponents can be extracted from spin clusters treated in such a manner. For this purpose a molecular field finite size scaling theory is discussed and effective critical exponents are analysed. Reliable values of critical quantities of various Ising and Potts models are extracted from very small system sizes. Received 30 September 2002 / Received in final form 25 November 2002 Published online 27 January 2003 RID="a" ID="a"e-mail: pleim@theorie1.physik.uni-erlangen.de  相似文献   

14.
We prove exponential decay for the tail of the radius R of the cluster at the origin, for subcritical random-cluster models, under an assumption slightly weaker than that (here, d is the number of dimensions). Specifically, if throughout the subcritical phase, then for some α > 0. This implies the exponential decay of the two-point correlation function of subcritical Potts models, subject to a hypothesis of (at least) polynomial decay of this function. Similar results are known already for percolation and Ising models, and for Potts models when the number q of available states is sufficiently large; indeed the hypothesis of polynomial decay has been proved rigorously for these cases. In two dimensions, the hypothesis that is weaker than requiring that the susceptibility be finite, i.e., that the two-point function be summable. The principal new technique is a form of Russo's formula for random-cluster models reported by Bezuidenhout, Grimmett, and Kesten. For the current application, this leads to an analysis of a first-passage problem for random-cluster models, and a proof that the associated time constant is strictly positive if and only if the tail of R decays exponentially. Received: 25 September 1996 / Accepted: 21 February 1997  相似文献   

15.
A simple real-space renormalization group method with two-terminal clusters is used to treat the critical behavior of Potts ferromagnet with free surface and defect plane on the same footing both for square and cubic lattices. For a square lattice, quite different critical behaviors are found for the cases of line defect and free surface. Whenq is larger than three, like the case ofa line type defect in ‘diamond’ hierarchical lattice, the order parameter on a defect line increases discontinuously at the bulk critical point if the defect interaction is sufficiently strong. This behavior, on the contrary, does not occur on the surface of a semi-infinite plane. For a cubic lattice, the phase diagram and renormalization group flow properties are obtained explicitly for bothq=1 (bond percolation) andq=2 (Ising model). In both cases, our calculations whow that the critical behavior on the surface of a semi-infinite system belongs to a different universality class from the critical behavior on the defect plane of a bulk system.  相似文献   

16.
Uma Divakaran 《Physica A》2007,384(1):39-43
In this article, we briefly review the critical behaviour of a long-range percolation model in which any two sites are connected with a probability that falls off algebraically with the distance. The results of this percolation transition are used to describe the quantum phase transitions in a dilute transverse Ising model at the percolation threshold pc of the long-range connected lattice. In the similar spirit, we propose a new model of a contact process defined on the same long-range diluted lattice and explore the transitions at pc. The long-range nature of the percolation transition allows us to evaluate some critical exponents exactly in both the above models. Moreover, mean field theory is valid for a wide region of parameter space. In either case, the strength of Griffiths McCoy singularities are tunable as the range parameter is varied.  相似文献   

17.
On the basis of general considerations, we propose a Langevin equation accounting for critical phenomena occurring in the presence of two symmetric absorbing states. We study its phase diagram by mean-field arguments and direct numerical integration in physical dimensions. Our findings fully account for and clarify the intricate picture known so far from the aggregation of partial results obtained with microscopic models. We argue that the direct transition from disorder to one of two absorbing states is best described as a (generalized) voter critical point and show that it can be split into an Ising and a directed percolation transition in dimensions larger than one.  相似文献   

18.
An analysis is made of various methods of phenomenological renormalization based on finite-dimensional scaling equations for inverse correlation lengths, the singular part of the free energy density, and their derivatives. The analysis is made using two-dimensional Ising and Potts lattices and the three-dimensional Ising model. Variants of equations for the phenomenological renormalization group are obtained which ensure more rapid convergence than the conventionally used Nightingale phenomenological renormalization scheme. An estimate is obtained for the critical finite-dimensional scaling amplitude of the internal energy in the three-dimensional Ising model. It is shown that the two-dimensional Ising and Potts models contain no finite-dimensional corrections to the internal energy so that the positions of the critical points for these models can be determined exactly from solutions for strips of finite width. It is also found that for the two-dimensional Ising model the scaling finite-dimensional equation for the derivative of the inverse correlation length with respect to temperature gives the exact value of the thermal critical index.  相似文献   

19.
We show that decimation transformations applied to high-q Potts models result in non-Gibbsian measures even for temperatures higher than the transition temperature. We also show that majority transformations applied to the Ising model in a very strong field at low temperatures produce non-Gibbsian measures. This shows that pathological behavior of renormalization-group transformations is even more widespread than previous examples already suggested.  相似文献   

20.
Based on the connection between the Ising model and a correlated percolation model, we calculate the distribution function for the fraction (c) of lattice sites in percolating clusters in subgraphs with n percolating clusters, f(n)(c), and the distribution function for magnetization (m) in subgraphs with n percolating clusters, p(n)(m). We find that f(n)(c) and p(n)(m) have very good finite-size scaling behavior and that they have universal finite-size scaling functions for the model on square, plane triangular, and honeycomb lattices when aspect ratios of these lattices have the proportions 1:square root[3]/2:square root[3]. The complex structure of the magnetization distribution function p(m) for the system with large aspect ratio could be understood from the independent orientations of two or more percolation clusters in such a system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号