共查询到19条相似文献,搜索用时 78 毫秒
1.
针对目前集成成像3D显示系统存在视场角范围小以及重构图像分辨率低的问题,设计一种适用于曲面集成成像3D显示且具有不同数值孔径的柔性微透镜阵列结构,并成功搭建基于曲面屏的集成成像3D显示系统。采用Trace Pro光学仿真软件建立曲面集成成像3D显示系统模型,研究微透镜的数值孔径对曲面集成成像3D显示系统重构性能的影响规律。结果表明:当微透镜尺寸和厚度一定时,数值孔径越大,重构图像的质量越好,且视场角越大;当柔性微透镜阵列的数值孔径为0.376时,重构图像具有较高的分辨率,当视场角达到60°时,重构图像依然清晰。为了验证仿真,制备具有不同数值孔径的柔性微透镜阵列并搭建曲面集成成像系统样机,得到的实验结果与仿真结果基本一致。 相似文献
2.
针对中短波碲镉汞(MCT)红外焦平面探测器的使用要求,设计了用于混合集成和单片集成且尺寸大小与探测器像元结构匹配的方形底折射微透镜阵列。采用热熔成形和(反应)离子柬刻蚀转移技术制作了多种红外材料微透镜,如Si、Ge、GaAs、蓝宝石以及红外玻璃(IRG-103和IRG-104)微透镜。针对混合集成和单片集成的不同要求,选用多种光刻胶如AZ6112和AZ6130等不同厚度的胶以及SUN-120P低熔点正型光刻胶,进行热熔和刻蚀实验,遴选分别适用于混合和单片集成的光刻胶。优化光刻胶和衬底材料的刻蚀速率比,得到高填充因子和合适光学参数的微透镜阵列。探究了SUN-120P低熔点正型光刻胶的特性和通过离子柬刻蚀转移视线实现零间距透镜的工艺。最后介绍了与MCT红外焦平面阵列器件的集成方式和工艺进展。 相似文献
3.
为了提高紫外焦平面阵列的填充因子,可以通过微透镜阵列与紫外焦平面阵列的集成,以改善紫外焦平面阵列的探测性能。根据标量衍射理论设计了用于日盲型紫外焦平面阵列的128×128衍射微透镜阵列,其工作中心波长为350nm,单元透镜F数为F/3.56。采用组合多层镀膜与剥离的工艺方法制备了128×128衍射微透镜阵列,对具体的工艺流程和制备误差进行了分析,测量了衍射微透镜阵列的光学性能。实验结果表明:衍射微透镜阵列的衍射效率为88%,与理论值95%有偏差,制备误差主要来自对准误差和线宽误差。紫外衍射微透镜阵列具有均匀的焦斑分布,与紫外焦平面阵列单片集成能较好地改善器件的整体性能。 相似文献
4.
5.
设计了一种用于裸眼3D显示屏的低串扰新型双面柱透镜光栅板,光栅板的入射面为等间距排列的与显示器子像素数量相同的凹形自由曲面光栅结构,出射面为斜置的凸形自由曲面光栅结构.根据裸眼3D显示原理和几何光学原理推导了双面光栅板的光栅单元自由曲面设计公式和光栅参数计算公式.通过MATLAB编程计算和SolidWorks软件建模得到光栅板模型.用TracePro软件对所设计的光栅板模型进行光线追迹仿真,结果表明:参数优化后的6视点斜置柱透镜双面光栅3D显示在最佳视角的图像串扰度为0.068%,与传统6视点斜置柱透镜光栅的最佳视角图像串扰度相比降低了2个数量级,并且在观看距离2 000mm~3 000mm范围内图像串扰度基本不变. 相似文献
6.
LIU Jia-nan CUI Ji-cheng YIN Lu SUN Ci CHEN Jian-jun ZHANG Rui LIU Jian-li 《光谱学与光谱分析》2018,38(10):3269-3272
作为对天文光谱进行观测的仪器,成像光谱仪有着十分重要的作用。由于传统的狭缝型成像光谱仪的狭缝限制,对面源天体的观测需多次扫面,才能获得完整的面源三维数据立方体(x, y; λ),这样将会浪费大量的观测时间。为了实现目标物体三维数据立方体的快速扫描,提出了一种基于微透镜阵列的无狭缝、静态化、快速高效的可见光到近红外波段积分视场成像光谱仪结构,并对其基本工作原理进行分析。为了扩展微透镜阵列积分视场成像光谱仪在医学、农业、物探等其他领域的应用潜能,该研究的光谱波段选择可见光到近红外波段。根据视场积分的工作原理,分析和设计了像方远心结构的离轴三反前置成像系统。系统采用视场离轴方式,波段范围400~900 nm,相对口径F/5,主镜、次镜和三镜皆为二次非球面,二次非球面系数分别为:-7.05,-0.92和-1.61。为减小系统体积,在离轴三反系统的焦平面附近放置反射镜。系统在奈奎斯特空间频率60 lp·mm-1处,调制传递函数大于0.75,成像质量接近衍射极限,满足系统要求。 相似文献
7.
微透镜辅助显微镜实现超分辨成像观测,具有免标记、无损伤、实时、定域和环境兼容性好等优势.液体微透镜阵列具有均一、易操控的特性,可实现无复杂机械扫描与驱动的超分辨成像.然而,简单高效地精确控制成像距离是微透镜实现超分辨成像的关键技术挑战.本文利用紫外曝光技术,实现了光盘上光刻胶微孔深度的均一性.结合液体自组装技术,在微孔中填充甘油液滴,保证微透镜辅助超分辨的成像距离.在光学显微镜下实现了对226 nm光栅栅线的可重构超分辨观测与1.59倍成像放大.本文从液体微透镜的阿贝显微成像原理出发,通过理论与模拟解释了液体微透镜的成像放大与超分辨特性.由此可见,光盘上集成的液体微透镜阵列在光学纳米测量与传感等器件中展现了巨大的应用潜力. 相似文献
8.
集成成像较小的再现深度一直都限制着集成成像的发展和应用,针对此问题提出了一种增大集成成像再现深度的方法。该方法在微透镜阵列与显示屏之间附加一个光孔阵列,利用光孔阵列限制显示屏上像素发出光线的发散角,从而有效地增大集成成像的再现深度。对集成成像的再现原理进行了深入分析,讨论了光孔直径与集成成像再现深度的关系。采用ASAP光学模拟软件对所提方法和传统方法进行了模拟对比实验,实验结果显示当光孔直径占透镜元节距的64%时,所提方法的再现深度是传统集成成像再现深度的1.5倍,实验结果验证了理论推导的正确性。 相似文献
9.
10.
11.
In this paper, we propose a novel performance-enhanced computational integral imaging reconstruction (CIIR) scheme by additional use of an imaging lens. In the proposed scheme, elemental images can be obtained by using a simultaneous pickup scheme of far three-dimensional (3D) objects from the lenslet array in both real and virtual image fields. And additional imaging lens produces an image shift effect of 3D objects located far away from the lenslet array and improve the visual quality of reconstructed images in CIIR by overcoming limitation of pickup range in integral imaging. To show the usefulness of the proposed system, some experiments are carried out for real 3D objects and its results are presented. 相似文献
12.
In this paper, we propose a method that controls the depth of the three-dimensional (3D) object existing over the depth-of-focus in integral imaging. The depth control method is performed only in a computer by synthesizing the intermediate sub-images between original sub-images obtained by transforming the captured elemental images. In the reconstruction process, we can obtain reconstructed 3D images with the better image quality within depth-of-focus than that reconstructed over the depth-of-focus. To demonstrate the feasibility of our method, optical and computational experiments are carried out and its results are presented. 相似文献
13.
14.
In this paper, we propose an occlusion removal technique for improved recognition of 3D objects that are partially occluded in computational integral imaging (CII). In the reconstruction process of a 3D object which is partially occluded by other objects, occlusion degrades the resolution of reconstructed 3D images and thus this affects negatively the recognition of a 3D object in CII. To overcome this problem, we introduce a method to eliminate occluding objects in elemental image array (EIA) and the proposed method is applied to 3D object recognition by use of CII. To our best knowledge, this is the first time to remove occlusion in CII. In our method, we apply the elemental image to sub-image (ES) transform to EIA obtained by a pickup process and those sub-images are employed for occlusion removal. After the transformation, we correlate those sub-images with a reference sub-image to locate occluding objects and then we eliminate the objects. The inverse ES transform provides a modified EIA. Actually, the modified EIA is considered to be an EIA without the object that occludes the object to be reconstructed. This can provide a substantial gain in terms of the image quality of 3D objects and in terms of recognition performance. To verify the usefulness of the proposed technique, some experimental results are carried out and the results are presented. 相似文献
15.
This paper presents an improved depth extraction method of 3D objects using computational integral imaging reconstruction (CIIR) based on the multiple windowing models. The proposed method records 3D objects using the lenslet array; and it reconstructs multiple sets of slice images from multiple CIIR methods based on the different windowing models. A depth map is then extracted by a block matching algorithm among multiple set of slice images. A preliminary experiment is carried out to show the feasibility of the proposed method. Experimental results indicate the proposed method outperforms the previous method with two windowing models. 相似文献
16.
In this paper, we propose a system combining the pickup process using an active sensor and the display process using depth-priority integral imaging (DPII) system to display true three-dimensional (3D) objects within large depth through real and virtual image fields. The active sensor provides depth map and color images of 3D objects. Using captured depth map and original color images, elemental images are computationally synthesized and displayed optically in DPII system. Proposed system provides scaling of 3D scenes for true 3D object. To show the usefulness of proposed system, we carry out the experiment for true 3D objects of three character patterns and present the experimental results. 相似文献
17.
Dong-Hak Shin 《Optics Communications》2009,282(14):2760-5114
In this paper, we propose a novel computational integral imaging reconstruction (CIIR) method to improve the visual quality of the reconstructed images using a pixel-to-pixel mapping and an interpolation technique. Since an elemental image is magnified inversely through the corresponding pinhole and mapped on the reconstruction output plane based on pinhole-array model in the conventional CIIR method, the visual quality of reconstructed output image (ROI) degrades due to the interference problem between adjacent pixels during the superposition of the magnified elemental images. To avoid this problem, the proposed CIIR method generates dot-pattern ROIs using a pixel-to-pixel mapping and substitutes interpolated values for the empty pixels within the dot-pattern ROIs using an interpolation technique. The interpolated ROIs provides a much improved visual quality compared with the conventional method because of the exact regeneration of pixel positions sampled in the pickup process without interference between pixels. Moreover, it can enable us to reduce a computational cost by eliminating the magnification process used in the conventional CIIR. To confirm the feasibility of the proposed system, some experiments are carried out and the results are presented. 相似文献
18.
In this paper, we propose a modified smart pixel mapping (MSPM) method for displaying orthoscopic three-dimensional (3D) images with a function of depth control in integral imaging system. In the proposed MSPM, the depth-converted elemental image array (EIA) is obtained through the pixel mapping process and the image interpolation technique. The proposed method gives us the depth conversion at distances different from the position of 3D object and provides various types of EIAs using only an original EIA for orthoscopic images. To show the usefulness of the proposed method, we carry out the preliminary experiments and present the experimental results. 相似文献
19.
Byung-Gook Lee 《Optics Communications》2010,283(10):2084-5381
In this paper, we propose an enhanced computational integral imaging system by both eliminating the occlusion in the elemental images recorded from the partially occluded 3D object and recovering the entire elemental images of the 3D object. In the proposed system, we first obtain the elemental images for partially occluded object using computational integral imaging system and it is transformed to sub-images. Then we eliminate the occlusion within the sub-images by use of an occlusion removal technique. To compensate the removed part from occlusion-removed sub-images, we use a recursive application of PCA reconstruction and error compensation. Finally, we generate the entire elemental images without a loss from the newly reconstructed sub-images and perform the process of object recognition. To show the usefulness of the proposed system, we carry out the computational experiments for face recognition and its results are presented. Our experimental results show that the proposed system might improve the recognition performance dramatically. 相似文献