共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
5.
在ns激光辐照光学薄膜温度分布的基础上,利用最大剪应力理论建立了光学薄膜发生迎光剥落的理论模型,得到了发生损伤相应的应力分布和膜层剥落半径与入射激光能量关系.通过数值分析,验证了理论模型与实验结果基本保持一致,膜层临界损伤阈值与实验结论在数量级上保持一致;剥落半径与入射能量关系曲线与实验结果基本吻合.指出薄膜的损伤形态与其附着力强度有着密切关系,只有当附着力强度小于某一定值(~9.4×10^4N/cm^2)时,才会发生剥落. 相似文献
6.
7.
8.
9.
10.
利用电子束热蒸发方法在K9玻璃基底上沉积氧化锆薄膜,并对其中一些样品用低能O2+进行了后处理。采用表面热透镜技术测量薄膜样品表面弱吸收,采用显微镜观察样品离子后处理前后的显微缺陷密度。测试结果表明:经离子后处理样品表面的缺陷密度从18.6/mm2降低到6.2/mm2,且其激光损伤阈值从15.9 J/cm2提高到23.1 J/cm2,样品的平均吸收率从处理前的1.147×10-4降低到处理后的9.56×10-5。通过对处理前后样品的表面微缺陷密度、吸收率及损伤形貌等的分析发现:离子后处理可以降低薄膜的显微缺陷和亚显微缺陷,从而降低薄膜的平均吸收率,同时增强了薄膜与基底的结合力,提高了薄膜的激光损伤阈值。 相似文献
11.
薄膜内的杂质粒子极易诱导薄膜损伤,研究了金属粒子诱导HfO2薄膜损伤的特征,并基于金属粒子的热力学过程进行了分析。金属粒子对激光的强烈吸收将引起薄膜的熔化、气化以及电离,从而引起薄膜的剥离和脱落,形成圆状坑点;金属粒子对激光的吸收、热扩散以及热膨胀效应与其尺寸等密切相关;从温升规律分析,在相同激光能量辐照下,粒子大小引起的温升不同,从而形成大小不一的点坑状破坏点,且存在一个温升效应最强的粒径,最易引起薄膜的损伤;从金属粒子激光等离子体的辐射效应分析,金属粒子的辐射谱主要集中在紫外部分,辐射光子能量比入射激光光子能量强,具有更强的电离能力,从而加剧了薄膜的去除。 相似文献
12.
13.
随着激光器朝向大功率、高能量的方向发展,激光损伤阈值成为了衡量光学元件抗激光损伤能力的重要参数之一,因此,能否准确地测量出光学元件的激光损伤阈值成为研究的重点。而光学元件激光损伤阈值测试的关键是能否准确地判别光学元件是否发生激光损伤。为解决目前常见的损伤判别方法存在的精度低、识别时间长、适用材料范围窄、操作复杂等不足,提出了一种新的激光损伤的判别方法,即等离子体诊断法。以K9玻璃为例,搭建激光损伤阈值的测试平台,利用光纤光谱仪采集强激光辐照K9玻璃时所产生的激光等离子体闪光光谱,并对该光谱进行诊断分析,将该光谱中是否含有待测试光学元件材料中特征元素的光谱峰作为其是否收到激光损伤的标准。同时,对K9玻璃进行了激光损伤阈值的测试,并将测试结果与等离子体闪光法和显微镜法所测的激光损伤阈值进行了对比分析。实验表明,提出的等离子体诊断方法的判别精度高、速度快、测试装置结构简单,易实现在线测量,可以大大地提高光学元件激光损伤阈值测试工作的效率。 相似文献
14.
用CO2,Nd:YAG和Cu蒸气激光分别对三种掺钕磷酸盐玻璃进行激光预辐照处理,研究了不同的激光波长的辐照条件对磷酸盐玻璃1.06μm激光破坏强度的影响。 相似文献
15.
16.
基于热传导理论,构建了高斯分布的连续激光辐照GaAs材料的二维轴对称非稳态物理模型,且利用多物理场直接耦合分析软件COMSOL Multiphysics求解热传导方程得到了材料表面温度分布曲线以及光斑中心处温度沿厚度方向分布曲线,并得出GaAs材料的分解损伤时间与入射光功率密度的关系曲线.研究表明,在连续激光辐照下,GaAs材料可能会发生分解损伤,激光功率越高,材料被破坏所需的时间越短.理论计算结果与相关的实验结论一致,说明所建立的激光辐照效应模型具有科学性. 相似文献
17.
18.
对晶体光损伤阈值测量的一种新方法的研究 总被引:1,自引:1,他引:1
提出一种测量晶体光损伤阈值的新方法,即确定激光横向功率密度的空间分布,利用晶体的激光损伤斑点半径,直接计算出晶体光损伤阈值,并给出入射激光为高斯光束时晶体损伤阈值与其损斑半径的关系。以提拉法生长的掺镁铌酸锂(MgO:LiNbO3)晶体为研究对象,用该方法测量其损伤阈值,得到了定量结果且所得数据与文献已报道的规律相符。分析得出同样激光条件下.损斑半径越大的晶体其光损伤阈值越小的结论,指出该方法同样适用于其他晶体或非高斯光束条件下光损伤阈值的测量并对具体作法进行了讨论。该测量方法弥补了常用测量方法只能定性或半定量的不足,可用于晶体抗光损伤阈值的精确测量。 相似文献
19.
20.
高能重复激光脉冲对光学元件损伤点的产生和扩展与损伤点对后续激光脉冲光强的调制作用密切相关。观察激光诱导K9玻璃的损伤点,发现损伤点是从里到外呈现辐射状分布,内部损伤程度最大,可致充分断裂;向外损伤程度减小,呈现辐射的应力相变,引起折射率变化;对损伤点的透射光谱检测发现其透过率下降大于20%,但是下降的幅度与波长无关,说明充分断裂的材料会对激光进行充分吸收,类似黑体吸收,其对入射光的吸收只与损伤点的面积有关。CCD对激光通过损伤点后的光强分布探测发现: 在激光能量传输过程中,损伤点会导致光强分布的不均匀,存在明显的散射效应,这会引起激光光强分布的不均匀性,导致损伤区域的进一步扩散。 相似文献