首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A planar differential mobility spectrometer (DMS) was coupled to a Mini 10 handheld rectilinear ion trap (RIT) mass spectrometer (MS) (total weight 10 kg), and the performance of the instrument was evaluated using illicit drug analysis. Coupling of DMS (which requires a continuous flow of drift gas) with a miniature MS (which operates best using sample introduction via a discontinuous atmospheric pressure interface, DAPI), was achieved with auxiliary pumping using a 5 L/min miniature diaphragm sample pump placed between the two devices. On-line ion mobility filtering showed to be advantageous in reducing the background chemical noise in the analysis of the psychotropic drug diazepam in urine using nanoelectrospray ionization. The combination of a miniature mass spectrometer with simple and rapid gas-phase ion separation by DMS allowed the characteristic fragmentation pattern of diazepam to be distinguished in a simple urine extract at lower limits of detection (50 ng/mL) than that achieved without DMS (200 ng/mL). The additional separation power of DMS facilitated the identification of two drugs of similar molecular weight, morphine (average MW = 285.34) and diazepam (average MW = 284.70), using a miniature mass spectrometer capable of unit resolution. The similarity in the proton affinities of these two compounds resulted in some cross-interference in the MS data due to facile ionization of the neutral form of the compound even when the ionic form had been separated by DMS.  相似文献   

2.
The discontinuous atmospheric pressure interface (DAPI) has been developed to allow a direct transfer of ions from atmosphere into an ion trap mass spectrometer with minimum pumping capability. Air is introduced into the trap with ions and used as a buffer gas for the ion trap operation. In this study, a method of introducing helium as a second buffer gas was developed for a miniature mass spectrometer using a dual DAPI configuration. The buffer gas effects on the performance of a linear ion trap (LIT) with hyperbolic electrodes were characterized for ion isolation, fragmentation and a mass-selective instability scan. Significant improvement was obtained with helium for resolutions of mass analysis and ion isolation, while moderate advantage was gained with air for collision-induced dissociation. The buffer gas can be switched between air and helium for different steps within a single scan, which allows further optimization of the instrument performance for tandem mass spectrometry.  相似文献   

3.
Ion/molecule reactions were explored in a newly developed miniature mass spectrometer fitted with a rectilinear ion trap (RIT) mass analyzer. The tandem mass spectrometry performance of this instrument is demonstrated using collision induced dissociation (CID) and ion/molecule reactions. The latter includes Eberlin transacetalization reactions and electrophilic additions. Selective detection of the chemical warfare simulant dimethyl methyl phosphonate (DMMP) was achieved through selective Eberlin reactions of its characteristic phosphonium fragment ion CH3OP(+)(O)CH3 (m/z 93), with 1,4-dioxane or 1,3-dioxolane. Efficient adduct formation as a result of electrophilic attack by the phosphonium ion on various nucleophilic reagents, including 1,1,3,3-tetramethyl urea, methanesulfonic acid methyl ester, dimethyl sulfoxide and methyl salicylate, was also observed using the RIT device. The product ions of these reactions were analyzed using CID and the characteristic fragmentation patterns of the ionic addition products were recorded using multiple-stage experiments in the miniature RIT instrument. This study clearly demonstrates that a small, home-built, miniature RIT mass spectrometer can be used to perform analytically useful ion/molecule reactions and also that instruments like this have the potential to provide a portable platform for in situ detection of organophosphorus esters and related compounds with high specificity using tandem mass spectrometry.  相似文献   

4.
将数字化离子阱技术和矩形离子阱(RIT)技术相结合,建立了数字化矩形离子阱质谱仪.此技术和装置既具有数字化电源的结构简单、输出稳定和易精确控制等特点,又结合了矩形离子阱的高离子存储效率、结构简单以及加工和装配容易等优点.构建了基于电喷雾(ESI)电离源的数字化矩形离子阱质谱仪系统,并使用Fenfluramine和PPG2000分别对此系统的质量分辨率和质量范围进行了测试.研究结果表明:一个用印刷线路板(PCB)制作的简单矩形离子阱,在200 V(半峰值)的数字束缚电压的驱动下,获得了大于500的质量分辨率和超过2600 Th的质量范围.实验证明,数字化离子阱技术的应用可以显著提高矩形离子阱的性能,特别是质量范围等关键的质谱仪指标.  相似文献   

5.
《中国化学快报》2023,34(4):107715
Liquid chromatography tandem mass spectrometry (LC-MS/MS) plays an important role in clinical diagnostics. Although LC-MS/MS is superior in terms of accurately quantifying molecules in complex matrices, instrument footprint, operation and maintenance complexity also hinder its expansion as the analytical technique of choice. In this study, a compact LC-MS instrument was developed, in which an assembled liquid chromatograph was coupled with a miniature ion trap mass spectrometer. The overall instrument has a footprint of 69 cm × 31 cm × 31 cm, and it requires no gas supply as well as minimum maintenance. Furthermore, the use of LC-MS is in accord with conventional clinical diagnostic protocols, and the choice of ion trap offers tandem MS performance. The results showed that the use of LC could improve both mixture analysis capability and detection sensitivity of the miniature mass spectrometer. After optimization, feasibility of this instrument in clinical practice was demonstrated by the quantitation of four widely used immunosuppressants in blood samples. Relatively good linearities were obtained, which spanned the reference ranges of effective therapeutic concentrations of each immunosuppressant. Intra-day and inter-day accuracy and precision of analytical method were also assessed. This work showed that a compact LC-MS instrument could be used in clinical diagnosis, either to replace conventional lab-scale instruments or to be used in POCT applications.  相似文献   

6.
The use of a Q-q-Q(linear ion trap) instrument to obtain product ion spectra is described. The instrument is based on the ion path of a triple quadrupole mass spectrometer with Q3 operable as either a conventional RF/DC quadrupole mass filter or a linear ion trap mass spectrometer with axial ion ejection. This unique ion optical arrangement allows de-coupling of precursor ion isolation and fragmentation from the ion trap itself. The result is a high sensitivity tandem mass spectrometer with triple quadrupole fragmentation patterns and no inherent low mass cut-off. The use of the entrance RF-only section of the instrument as accumulation ion trap while the linear ion trap mass spectrometer is scanning enhances duty cycles and results in increased sensitivities by as much as a factor of 20. The instrument is also capable of all of the triple quadrupole scans including multiple-reaction monitoring (MRM) as well as precursor and constant neutral loss scanning. The high product ion scanning sensitivity allows the recording of useful product ion spectra near the MRM limit of quantitation.  相似文献   

7.
Current miniature mass spectrometers mainly focus on the analyses of organic and small biological molecules. In this study, we explored the possibility of developing high resolution miniature ion trap mass spectrometers for whole protein analysis. Theoretical derivation, GPU assisted ion trajectory simulation, and initial experiments on home‐developed “brick” mass spectrometer were carried out. Results show that ion‐neutral collisions have smaller damping effect on large protein ions, and a higher buffer gas pressure should be applied during ion trap operations for protein ions. As a result, higher pressure ion trap operation not only benefits instrument miniaturization, but also improves mass resolution of protein ions. Dynamic mass scan rate and generation of low charge state protein ions are also found to be helpful in terms of improving mass resolutions. Theory and conclusions found in this work are also applicable in the development of benchtop mass spectrometers.  相似文献   

8.
The recent development of miniature ion trap mass spectrometer systems in the last ten years is reviewed in this paper. These instruments adopt different atmospheric pressure interfaces (APIs), which are membrane inlets (MIs), discontinuous atmospheric pressure interface (DAPI) and continuous atmospheric pressure interface (CAPI).  相似文献   

9.
Miniature mass spectrometer is more compact and portable than traditional commercial mass spectrometry, with more potential for application outside the laboratory. However, a miniature mass spectrometer is less sensitive than a commercial instrument, limiting its application scenarios. The ion transmission efficiency of the instrument is an essential factor affecting the sensitivity. Still, there are few works of literature on the quantitative study of the ion transmission efficiency of each component from a systematic perspective. In this paper, the Faraday cup coupled with a microcurrent signal testing instrument was used to measure the ions generated by nanoelectrospray ionization (nano-ESI), which have successfully gone through several components. Then the ion transmission efficiency of each component was quantified. Results showed that the front lens had the highest ion transmission efficiency of 39.7%, whereas the inlet and skimmer had the lowest ion transfer efficiency of 0.8% and 17.1%. Next, the influence of control parameters on ion transmission efficiency of critical components was investigated. If optimized, the ion funnel and the skimmer had the potential to improve their transmission efficiency by 120% and 79%, respectively. This paper shows the decreasing intensity distribution of ions in the whole transmission process and the transmission efficiency of each component, which can guide for improving the sensitivity of the miniature mass spectrometer.  相似文献   

10.
A new atmospheric pressure (AP) infrared (IR) matrix-assisted laser desorption/ionization (MALDI) ion source was developed and interfaced with a Thermo Finnigan LCQ ion trap mass spectrometer. The source utilized a miniature all-solid-state optical parametric oscillator (OPO)-based IR laser system tunable in the lambda = 1.5-4 microm spectral range and a nitrogen ultraviolet (UV) laser (lambda = 337 nm) for use in comparative studies. The system demonstrated comparable performance at 3 microm and 337 nm wavelengths if UV matrices were used. However, AP IR-MALDI using a 3 microm wavelength showed good performance with a much broader choice of matrices including glycerol and liquid water. AP IR-MALDI mass spectra of peptides in the mass range up to 2000 Da were obtained directly from aqueous solutions at atmospheric conditions for the first time. A potential use of the new AP IR-MALDI ion source includes direct MS analysis of biological cells and tissues in a normal atmospheric environment as well as on-line coupling of mass spectrometers with liquid separation techniques.  相似文献   

11.
As narcotic control has become worse in the past decade and the death toll of drug abuse hits a record high, there is an increasing demand for on-site rapid detection of illegal drugs. This work developed a portable digital linear ion trap mass spectrometer based on separate-region corona discharge ionization source to meet this need. A separate design of discharge and reaction regions was adopted with filter air as both carrier gas for the analyte and protection of the corona discharge needle. The linear ion trap was driven by a digital waveform with a low voltage (±100 V) to cover a mass range of 50–500 Da with a unit resolution at a scan rate of 10,000 Da/s. Eighteen representative drugs were analyzed, demonstrating excellent qualitative analysis capability. Tandem mass spectrometry (MS/MS) was also performed by ion isolation and collision-induced dissociation (CID) with air as a buffer gas. With cocaine as an example, over two orders of magnitude dynamic range and 10 pg of detection limit were achieved. A single analysis time of less than 10 s was obtained by comparing the information of characteristic ions and product ions with the built-in database. Analysis of a real-world sample further validated the feasibility of the instrument, with the results benchmarked by GC-MS. The developed system has powerful analytical capability without using consumables including solvent and inert gas, meeting the requirements of on-site rapid detection applications.  相似文献   

12.
A novel sub-miniature double-focusing sector-field mass spectrometer has been fabricated at the University of Minnesota using a combination of conventional machining methods and thin film patterning techniques typically used in the sensor technology industry. Its design is based on the mass separation capabilities of a 90 degrees cylindrical crossed electric and magnetic sector-field analyzer with a 2-cm radius, which under proper conditions is able to effectively cancel the angular and chromatic dispersion of the ion beam, thus improving the resolving power of the instrument. Simulations using finite element analysis and computer modeling were employed to verify and optimize the performance of the proposed instrument before and during its fabrication. The prototype was able to attain a resolving power of 106 full-width at half-maximum (FWHM), a detection limit close to 10 parts per million, a dynamic range of 5 orders of magnitude and a mass range up to 103 Da. Its overall size, including the magnet assembly, is 3.5 cm wide, 6 cm long and 7.5 cm tall, it weighs 0.8 kg, and its power consumption was measured to be 2.5 W. The performance of the instrument was found to be comparable to that of commercial residual gas analyzers, at a fraction of the cost. All these characteristics make this miniature mass spectrometer suitable for portable and low-cost analytical instrumentation.  相似文献   

13.
Low-resolution electron ionization mass spectra recorded on various types of mass spectrometers (time-of-flight, quadrupole, and three-dimensional ion trap) were compared. A model mixture of 10 organic compounds (MW < 200 Da) was analyzed by gas chromatography-mass spectrometry. Pure mass spectra of analytes were extracted using the AMDIS software. The best repeatability was achieved for the time-of-flight mass spectrometer. The mass spectra recorded by a quadrupole and a time-of-flight mass spectrometer were quite similar. In the case of these instruments, library search using a commercial mass spectral data base (NIST’05) gave satisfactory result for each analyte (rank 1 or 2 in the “hit list”; Match > 900). In some cases, the mass spectra of model compounds recorded by the ion trap mass spectrometer differed in intensity of certain mass spectral peaks (but not in the set of peaks) from the mass spectra presented in the library and from the experimental mass spectra recorded by the time-of-flight and quadrupole instruments.  相似文献   

14.
A novel matrix-assisted laser desorption/ionisation quadrupole ion trap time-of-flight (MALDI QIT ToF) mass spectrometer has been used to analyse high mass peptide ions exceeding 2000 Da. Human adrenocorticotropic hormone (fragment 18-39) and oxidised bovine insulin chain B were utilised to evaluate the performance of the instrument both in MS and in MS/MS mode. Its ability to efficiently isolate ions and to fragment them using collisionally activated decomposition (CAD) has been demonstrated using mixtures diluted to the low-femtomole level on target. Additionally, multiple stage mass spectrometry (MS/MS/MS) provides a second-generation product ion spectrum in which new fragment ions are detected and new stretches of amino acids are identified.  相似文献   

15.
本研究从理论上优化了一种新型结构的线型离子阱质量分析器-阶梯电极离子阱质量分析器,它是由2对阶梯电极与1对端盖电极组成。与传统平板电极矩形离子阱长阶梯电极离子阱相比,具有调节电场分布的优点,同时在几何结构设计上更接近于双曲面电极结构,但比双曲面电极更容易加工。通过改变阶梯电极结构的高度、宽度、场半径比例等几何参数,实现了对离子阱内部电场分布的优化,从而实现离子阱性能的优化。理论模拟研究结果表明,根据几何结构和电场分布优化获得的阶梯电极离子阱质量分析器(X0×Y0=9 mm×5 mm),可以在225 Da/ s 扫速下获得10150的质量分辨率。阶梯电极离子阱结构简单,分辨能力明显高于矩形离子阱。初步的实验结果表明,阶梯电极离子阱具有较好的串级质谱分析性能。  相似文献   

16.
A new type of quadrupole linear ion trap mass spectrometer, Q TRAP trade mark LC/MS/MS system (Q TRAP trade mark ), was evaluated for its performance in two studies: firstly, the in vitro metabolism of gemfibrozil in human liver microsomes, and, secondly, the quantification of propranolol in rat plasma. With the built-in information-dependent-acquisition (IDA) software, the instrument utilizes full scan MS in the ion trap mode and/or constant neutral loss scans as survey scans to trigger product ion scan (MS(2)) and MS(3) experiments to obtain structural information of drug metabolites 'on-the-fly'. Using this approach, five metabolites of gemfibrozil were detected in a single injection. This instrument combines some of the unique features of a triple quadrupole mass spectrometer, such as constant neutral loss scan, precursor ion scan and multiple reaction monitoring (MRM), together with the capability of a three-dimensional ion trap. Therefore, it becomes a powerful instrument for metabolite identification. The fast duty cycle in the ion trap mode allows the use of full product ion scan for quantification. For the quantification of propranolol, both MRM mode and full product ion scan in the ion trap mode were employed. Similar sensitivity, reproducibility and linearity values were established using these two approaches. The use of the product ion scan mode for quantification provided a convenient tool in selecting transitions for improving selectivity during the method development stage.  相似文献   

17.
We report on the first multiplex preparative separation by mass spectrometry of bio-organic molecules in the 200-350 Da mass range that is typical for synthetic drugs. A five-component mixture consisting of two di- and three tripeptides has been separated by mass using a specially designed mass spectrometer. The instrument for preparative separations consists of an electrospray ionization (ESI) source, ion transfer optics, an electrostatic sector, and an inhomogeneous-field magnetic mass analyzer that achieves linear mass dispersion of ion beams. Protonated peptides produced by electrospray were separated, nondestructively landed on a 16-channel array of dry collector plates, and reconstituted in solution. The preparation procedures and the instrumental conditions have been optimized to maximize the ion currents. The significant features of the special mass spectrometer are high ion currents and simultaneous separation and collection of mixture components.  相似文献   

18.
The use of a quadrupole ion trap mass spectrometer (QITMS) for quantitative analysis of hydrogen and helium as well as of other permanent gases is demonstrated. Like commercial instruments, the customized QITMS uses mass selective instability; however, this instrument operates at a greater trapping frequency and without a buffer gas. Thus, a useable mass range from 2 to over 50 daltons (Da) is achieved. The performance of the ion trap is evaluated using part-per-million (ppm) concentrations of hydrogen, helium, oxygen, and argon mixed into a nitrogen gas stream, as outlined by the National Aeronautics and Space Administration (NASA), which is interested in monitoring for cryogenic fuel leaks within the Space Shuttle during launch preparations. When quantitating the four analytes, relative accuracy and precision were better than the NASA-required minimum of 10% error and 5% deviation, respectively. Limits of detection were below the NASA requirement of 25-ppm hydrogen and 100-ppm helium; those for oxygen and argon were within the same order of magnitude as the requirements. These results were achieved at a fast data recording rate, and demonstrate the utility of the QITMS as a real-time quantitative monitoring device for permanent gas analysis.  相似文献   

19.
This work is aimed at understanding the aspects of designing a miniature mass spectrometer (MS) system. Several types of small MS systems are evaluated and discussed, including linear quadrupole, quadrupole ion trap, time of flight, and sector. Analysis of hydrogen, helium, oxygen, and argon in a nitrogen background with the concentrations of the components of interest ranging from 0 to 5000 parts per million (ppm). The performance of each system in terms of accuracy, precision, limits of detection, response time, recovery time, scan rate, size, and weight is assessed. The relative accuracies of the systems varied from <1% to approximately 40% with an average below 10%. Relative precisions varied from 1% to 20%, with an average below 5%. The detection limits had a large distribution, ranging from 0.2 to 170 ppm. The systems had a diverse response time ranging from 4 to 210 s, as did the recovery time with a 6-to-210-s distribution. Most instruments had scan times near 1 s; however, one instrument exceeded 13 s. System weights varied from 9 to 52 kg and sizes ranged from 15 x 10(3) cm3 to 110 x 10(3) cm3. A performance scale is set up to rank each system, and an overall performance score is given to each system.  相似文献   

20.
各种野外环境的现场检测、现场诊断、流程监控、排放物检测与控制、突发事件的处理、尤其是化学和生物武器的检测等诸多需要现场使用质谱仪的场合都对质谱仪的小型化提出了迫切的要求。小型离子阱具有较高的灵敏度,可进行MS/MS实验,可利用离子-分子反应来识别特殊的化学基团,因而是小型质谱仪的重要质量分析器。本研究对小型离子阱的工作原理作了简要介绍,并以此为依据提出了进行小型离子阱质量校正的方法,推导了相关的公式,还成功地将其应用于自制的小型矩形离子阱质谱仪进行了质量校正,并指出该方法还可用于仪器RF等电学系统性能的检验。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号