共查询到20条相似文献,搜索用时 15 毫秒
1.
Corrie SR Lawrie GA Trau M 《Langmuir : the ACS journal of surfaces and colloids》2006,22(6):2731-2737
A strategy for the production and subsequent characterization of biofunctionalized silica particles is presented. The particles were engineered to produce a bifunctional material capable of both (a) the attachment of fluorescent dyes for particle encoding and (b) the sequential modification of the surface of the particles to couple oligonucleotide probes. A combination of microscopic and analytical methods is implemented to demonstrate that modification of the particles with 3-aminopropyl trimethoxysilane results in an even distribution of amine groups across the particle surface. Evidence is provided to indicate that there are negligible interactions between the bound fluorescent dyes and the attached biomolecules. A unique approach was adopted to provide direct quantification of the oligonucleotide probe loading on the particle surface through X-ray photoelectron spectroscopy, a technique which may have a major impact for current researchers and users of bead-based technologies. A simple hybridization assay showing high sequence specificity is included to demonstrate the applicability of these particles to DNA screening. 相似文献
2.
Mesoporous silica particles with narrow size distribution were obtained by a seeded growth process. Depending on the size of seeds and on the time of addition of reactants, the size of particles can be varied between 300 and 1000 nm. In a second step the dye fluorescein isothiocyanate can be embedded. The structure of these new silica particles with low density was investigated by SEM, XRD, BET, and confocal microscopy. 相似文献
3.
Core-shell silica particles, with a diameter of 1.5 mum, containing a dye fluorescein isothiocyanate (FITC), are synthesized by the hydrolysis and condensation of tetraethylorthosilicate (TEOS). Sodium dodecyl sulfate (SDS) is added to synthesize fluorescent core particles with the diameter of approximately 1 mum. In the addition of SDS, the surface charge reduced by counterions (Na+) of the surfactant leads to a higher degree of aggregation of the primary particles and the formation of larger secondary particles. The particle growth kinetics confirms the aggregation growth model for the synthesis of monodisperse silica particles, and also shows the dependence of final particle size on colloidal stability resulting from the addition of SDS. Light and X-ray scattering data reveal that the final particles have compactly packed structures with smooth surfaces. The seeded growth technique is then used to form a silica shell layer on the fluorescent core. The added amount of water and NH4OH has significant effects on shell formation. Finally, the final core-shell silica particles are modified by chemisorption of octadecanol at the surface to be dispersed in organic solvents. Octadecyl-coated silica particles are sterically stabilized in silica index-matching solvents such as chloroform and hexadecane to directly image separate particles using confocal microscopy. In chloroform, the organophilic silica particles disperse well, whereas in hexadecane they form a volume-filling gel structure at room temperature. 相似文献
4.
Daisuke Nagao Mikio Yokoyama Shu Saeki Yoshio Kobayashi Mikio Konno 《Colloid and polymer science》2008,286(8-9):959-964
Dual functions of magnetic and fluorescent properties were created in composite particles that incorporated magnetite (Fe3O4) nanoparticles in particle cores of silica and fluorescent pyrene in particle shells of polystyrene. The Fe3O4 nanoparticles were prepared with a conventional homogeneous precipitation method and surface modified with a coupling agent of carboxyethylsilanetriol. The silica particles incorporating Fe3O4 nanoparticles were synthesized with a modified Stöber method in which the Fe3O4 nanoparticles were added to a system of tetraethylorthosilicate (TEOS)/ammonia/water/ethanol. Then, the magnetite/silica composite particles were coated with the pyrene/polystyrene shell in a soap-free emulsion polymerization, which was conducted in the presence of pyrene in a mixed solvent of water/ethanol. The composite particles prepared in the mixed solvent had both magnetic and fluorescent properties. The fluorescent spectrum of the particles with Fe3O4 was very similar to that without Fe3O4, indicating that the magnetic component within the core particles scarcely interfered with the fluorescent emission from the polymer shell. 相似文献
5.
Andrew T. Heitsch Danielle K. Smith Reken N. Patel David Ress Brian A. Korgel 《Journal of solid state chemistry》2008,181(7):1590-1599
Multifunctional colloidal core-shell nanoparticles of magnetic nanocrystals (of iron oxide or FePt) or gold nanorods encapsulated in silica shells doped with the fluorescent dye, Tris(2,2′-bipyridyl)dichlororuthenium(II) hexahydrate (Rubpy) were synthesized. The as-prepared magnetic nanocrystals are initially hydrophobic and were coated with silica using a microemulsion approach, while the as-prepared gold nanorods are hydrophilic and were coated with silica using a Stöber type of process. Each approach yielded monodisperse nanoparticles with uniform fluorescent dye-doped silica shells. These colloidal heterostructures have the potential to be used as dual-purpose tags—exhibiting a fluorescent signal that could be combined with either dark-field optical contrast (in the case of the gold nanorods), or enhanced contrast in magnetic resonance images (in the case of magnetic nanocrystal cores). The optical and magnetic properties of the fluorescent silica-coated gold nanorods and magnetic nanocrystals are reported. 相似文献
6.
Juillerat F Bowen P Hofmann H 《Langmuir : the ACS journal of surfaces and colloids》2006,22(5):2249-2257
Much interest has been generated in the fabrication of colloidal crystals from suspensions because of the promise of photonic band gap applications. However, since the case of small, nonsedimenting colloidal particles indeed remains rather rarely treated, spherical silica particles with diameters varying from 75 down to 20 nm have been used in the present work to fabricate colloidal crystals by drying the suspending liquid. Typical events that take place during the drying process of a particulate film, such as cracking, compaction and penetration of air into a porous network, have been evaluated using existing theories, and the maximum stress in the drying film could be approximated. Investigation on the dry film structure by scanning electron microscopy showed the arrangement of particles in a close-packed system. To interpret the formation of such crystals, the amplitudes of the interparticle and capillary forces have been estimated from existing models. The repulsive interparticle forces allow the particles to remain stable and thus rearrange up to fairly high particle concentration. These modeling results showed the dominance of the capillary contribution at the end of the drying process. Nitrogen adsorption/desorption measurements gave very coherent results regarding both pore volume and pore size of the dry particulate films when compared to the expected ordered packing arrangements. 相似文献
7.
Slides for ultra thin-layer chromatography (UTLC) were made by coating nonporous silica particles, chemically modified with polyacrylamide, as 15 μm films on glass or silicon. Three proteins, myoglobin, cytochrome c and lysozyme, are nearly baseline resolved by the mechanism of hydrophilic interaction chromatography. A plate height as low as 3 μm, with 3900 plates, is observed in 14 mm. Varying silica particle diameter among 900, 700 and 350 nm showed that decreasing particle diameter slightly improves resolution but slows the separation. Matrix-assisted laser desorption/ionization (MALDI)-MS of the proteins after separation is demonstrated by wicking sufficient sinapinic acid into the separation medium. 相似文献
8.
Farshchi-Tabrizi M Kappl M Cheng Y Gutmann J Butt HJ 《Langmuir : the ACS journal of surfaces and colloids》2006,22(5):2171-2184
In this study we measured the adhesion forces between atomic force microscope (AFM) tips or particles attached to AFM cantilevers and different solid samples. Smooth and homogeneous surfaces such as mica, silicon wafers, or highly oriented pyrolytic graphite, and more rough and heterogeneous surfaces such as iron particles or patterns of TiO2 nanoparticles on silicon were used. In the first part, we addressed the well-known issue that AFM adhesion experiments show wide distributions of adhesion forces rather than a single value. Our experiments show that variations in adhesion forces comprise fast (i.e., from one force curve to the next) random fluctuations and slower fluctuations, which occur over tens or hundreds of consecutive measurements. Slow fluctuations are not likely to be the result of variations in external factors such as lateral position, temperature, humidity, and so forth because those were kept constant. Even if two solid bodies are brought into contact under precisely the same conditions (same place, load, direction, etc.) the result of such a measurement will often not be the same as that of the previous contact. The measurement itself will induce structural changes in the contact region, which can change the value for the next adhesion force measurement. In the second part, we studied the influence of humidity on the adhesion of nanocontacts. Humidity was adjusted relatively fast to minimize tip wear during one experiment. For hydrophobic surfaces, no signification change in adhesion force with humidity was observed. Adhesion force versus humidity curves recorded with hydrophilic surfaces either showed a maximum or continuously increased. We demonstrate that the results can be interpreted with simple continuum theory of the meniscus force. The meniscus force is calculated based on a model that includes surface roughness and takes into account different AFM tip (or particle) shapes by a two-sphere model. Experimental and theoretical results show that the precise contact geometry has a critical influence on the humidity dependence of the adhesion force. Changes in tip geometry on the sub-10-nm length scale can completely change adhesion force versus humidity curves. Our model can also explain the differences between earlier AFM studies, where different dependencies of the adhesion force on humidity were observed. 相似文献
9.
Monodisperse silica core-shell particles with a high surface area and large pore size were rapidly prepared via a multilayer-by-multilayer (ML-b-ML) process, with 6-7 layers of silica nanoparticles deposited per coating cycle onto an oppositely charged polyelectrolyte in 0.1 M NH(4)NO(3) at pH 2.7. The resultant porous shells show much greater porosity compared to particles obtained by the traditional layer-by-layer process. 相似文献
10.
The atomic force microscope (AFM) has been used to examine the stickiness of bacteria on the basis of the analysis of approach and retraction force curves between the AFM tip and the bacterial surface. One difficulty in analyzing approach curve data is that the distance between the AFM tip and the surface of the bacterium is difficult to define. The exact distances are difficult to determine because the surface of the bacterium deforms during force imaging, producing a highly nonlinear region in the approach curve. In this study, AFM approach and retraction curves were obtained using a colloid probe AFM for three strains of Escherichia coli (D21, D21f2, and JM109). These strains differed in their relative adhesion to glass surfaces, on the basis of measurements of sticking coefficients in packed bed flow through column tests. A gradient force curve analysis method was developed to model the interactions between the colloid probe and a surface. Gradient analysis of the approach curve revealed four different regions of colloid-surface interactions during the approach and contact of the probe with the bacterial surface: a noninteraction region, a noncontact phase, a contact phase, and a constant compliance region. The noncontact phase, which ranged from 28 to 59 nm for the three bacterial strains, was hypothesized to arise primarily from steric repulsion of the colloid by extracellular polymers on the bacterial surface. The contact phase, spanning 59-113 nm, was believed to arise from the initial pressure of the colloid on the outer membrane of the cell. The constant compliance region likely reflected the response of the colloid probe to the stiff peptidoglycan layer that confers strength and rigidity to gram negative bacteria. It was shown that the sticking coefficients reported for the three E. coli strains were correlated with the length of the noncontact phase but not the properties of the other phases. Sticking coefficients were also not correlated with any parameters determined from retraction force curves such as pull-off distances or separation energies. These results show that gradient analysis is useful for studying the contribution of the length of the exopolymers on the cell surface to bacterial adhesion to glass surfaces. 相似文献
11.
12.
A DNA probe labeled with a 4-([4-(dimethylamino)phenyl]azo)benzoic acid (DABCYL) quencher and a carboxyfluorescein (FAM) donor at its 5'- and 3'-termini can be used for the detection of Hg(2+) ions and phenylmercury ions (PhHg(+)). This DNA probe possesses a random coil structure that changes into a hairpin-like structure upon binding Hg(2+) and PhHg(+) ions. As a result, the fluorescence of the FAM unit decreased through quenching between the donor and the quencher. In the presence of ethylenediaminetetraacetic acid (EDTA), the DNA probe allowed the selective detection of PhHg(+) ions at concentrations as low as 70.0 nM, mainly as a result of T-Hg(2+)-T coordination and π-π stacking between the Ph unit and DNA bases. A linear correlation existed between the fluorescence intensity and the concentration of PhHg(+) ions over the range from 0.10 to 1.0 μM (R(2) = 0.99). After acid hydrolysis and neutralization of the samples, all of the mercury species are converted to Hg(2+) ions, allowing us to use the DNA-based probe to determine the concentrations of total mercury species at the nM level. The practicality of this probe has been validated by the analyses of pond water and fish samples, showing its advantages of sensitivity, selectivity, and simplicity. 相似文献
13.
Preparation of large monodispersed spherical silica particles using seed particle growth 总被引:7,自引:0,他引:7
To obtain large-sized, monodispersed spherical particles of silica by sol precipitation, a seed particle growth method was attempted. The formation of secondary particles during seed particle growth causing a multimodal distribution of particle size was suppressed via fine adjustment of the reaction conditions, such as TEOS, ammonia, and water concentrations, as well as operational conditions such as feeding time and agitation speed. Among the reaction conditions, an increase of TEOS concentration promoted secondary particle formation, resulting in bimodal particle distribution. However, secondary particle formation was depressed with increasing ammonia and water concentrations. In addition, long feeding time (low feed flow rate) and rigorous agitation significantly reduced secondary particle formation because they contributed to the slow generation of supersaturation and rapid seed particle growth, respectively. 相似文献
14.
Oh C Chung SC Shin SI Kim YC Im SS Oh SG 《Journal of colloid and interface science》2002,254(1):79-86
The distribution of macropores in silica particles prepared by the hydrolysis and condensation of TEOS in a hexane/water/decyl alcohol (O(1)/W/O(2)) multiple emulsion was investigated. To stabilize the emulsion structure, hydroxypropyl cellulose (HPC) was added into the O(2) phase and polyethylene glycol (PEG) was added into the water phase. Without HPC, the particles have an irregular shape and hardly have particulate forms. As the concentration of HPC increases, the shape of particles becomes more and more spherical and the size decreases. The size of silica particles was varied from 5 to 1 microm as the concentration of HPC increased from 0.5 to 0.7 wt%. The number and size of the macropores in silica particles were affected by PEG polymer concentration. With the variation in the concentration of PEG, macropores in silica particles were located at the surface of or inside the particles. At high concentrations of PEG, the macropores in particles were located inside the particles, but at low concentrations of PEG the macropores were located at the surfaces of particles. Interestingly, the particles of dimpled surfaces were formed when the molar ratio of water to TEOS (R(w)) was 4.0 and the concentrations of PEG and HPC were 2.0 and 0.7 wt% respectively. The surface areas of dimpled silica particles and completely spherical particles, measured by the BET method, were 409 and 433 m(2)/g respectively. 相似文献
15.
Kubo Y Kobayashi A Ishida T Misawa Y James TD 《Chemical communications (Cambridge, England)》2005,(22):2846-2848
Selective anion-induced organization of phenylboronic acids and alizarin results in a new TURN-ON fluorescent sensor for anions in MeOH. 相似文献
16.
Tleugabulova D Duft AM Zhang Z Chen Y Brook MA Brennan JD 《Langmuir : the ACS journal of surfaces and colloids》2004,20(14):5924-5932
At present, there is no direct experimental evidence that primary silica particles, which exist only transiently for a few seconds during the St?ber silica synthesis, can be stable in aqueous solutions. In the present work, we show that primary silica particles are formed spontaneously after the dissolution of diglycerylsilane (DGS) in aqueous solutions and remain stable for prolonged periods of time. By using time-resolved fluorescence anisotropy (TRFA), we demonstrate that this unique property of DGS is ascribed to the slow kinetics of silica particle growth in diluted sols at pH approximately 9.0. The anisotropy decay of the cationic dye rhodamine 6G (R6G), which strongly adsorbs to silica oligomers and nanoparticles in DGS sols, could be fit to three components: a fast (picosecond) scale component associated with free R6G, a slower (nanosecond) rotational component associated with R6G bound to primary silica particles, and a residual (nondecaying) anisotropy component associated with R6G that was bound to secondary or larger particles that were unable to rotate on the time scale of the R6G emission lifetime (4 ns). The data show that, under conditions where fast hydrolysis is obtained, the initial size of the nuclei depends on the silica concentration, with larger nuclei being present in more concentrated sols, while the rate of growth of primary particles depends on both silica concentration and solution pH. At low silica concentrations and high pHs, it was possible to observe the growth of stable, nonaggregating primary silica particles by a mechanism involving rapid nucleation followed by monomer addition. The presence of stable primary particles was confirmed by atomic force microscopy (AFM) imaging. At higher silica concentrations and lower pHs, there was an increase in the initial size of the nuclei formed, which subsequently grew to a larger radius (> 4.5 nm) or aggregated with time, and in such cases, nucleation and aggregation occurred simultaneously in the early stage of silica formation. The data clearly show the power of time-resolved fluorescence anisotropy decay measurements for probing the growth of silica colloids and show that this method is useful for elucidating the mechanism of particle formation and growth in situ. 相似文献
17.
Bing Yu Hua Yuan Dong Wang Hailin Cong Xiaodan Xu Shujing Yang 《Colloid and polymer science》2014,292(9):2361-2367
Anisotropic polystyrene/poly(styrene-co-divinylbenzene) (PS/P(S-DVB)) protrusion particles with various morphologies such as eyeball-like, snowman-like, and raspberry-like were synthesized using a modified seeded polymerization method by dynamically controlling and stabilizing the phase separation. The effects of swelling agent, crosslinker, and monomer concentrations on the particle morphologies were studied. Using the PS/P(S-DVB) protrusion particles as templates, anisotropic silica (SiO2) hollow microspheres were fabricated facilely. The obtained anisotropic silica hollow spheres had a potential application in rapid waste removal and detoxification extraction with a very simple procedure. 相似文献
18.
Nano-sized metal particles, including both elemental and oxidized metals, have received significant interest due to their biotoxicity and presence in a wide range of industrial systems. A novel silica technology has been recently explored to minimize the biotoxicity of metal particles by encapsulating them with an amorphous silica shell. In this study, a method to determine silica coating efficiency on metal particles was developed. Metal particles with silica coating were generated using gas metal arc welding (GMAW) process with a silica precursor tetramethylsilane (TMS) added to the shielding gas. Microwave digestion and Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES) were employed to solubilize the metal content in the particles and analyze the concentration, respectively. Three acid mixtures were tested to acquire the appropriate digestion method targeting at metals and silica coating. Metal recovery efficiencies of different digestion methods were compared through analysis of spiked samples. HNO3/HF mixture was found to be a more aggressive digestion method for metal particles with silica coating. Aqua regia was able to effectively dissolve metal particles not trapped in the silica shell. Silica coating efficiencies were thus calculated based on the measured concentrations following digestion by HNO3/HF mixture and aqua regia. The results showed 14-39% of welding fume particles were encapsulated in silica coating under various conditions. This newly developed method could also be used to examine the silica coverage on particles of silica shell/metal core structure in other nanotechnology areas. 相似文献
19.
A. Larsson 《Colloid and polymer science》1999,277(7):680-686
Negatively charged silica particles were investigated at pH 10.0. They were found to be rod-shaped (cylinder) with a diameter
of 5–5.5 nm and a full length of 44–67 nm depending on the rod model used. Moreover, the particles were found to be stable
against aggregation in the region 0.4–50 mM NaCl.
Received: 2 December 1998 Accepted in revised form: 2 February 1999 相似文献
20.
Durable Lotus-effect surfaces with hierarchical structure using micro- and nanosized hydrophobic silica particles 总被引:2,自引:0,他引:2
Surfaces with a very high apparent water contact angle (CA) and low water contact angle hysteresis (CAH) exhibit many useful characteristics, among them extreme water repellency, low drag for fluid flow, and a self-cleaning effect. The leaf of the Lotus plant (Nelumbo nucifera) achieves these properties using a hierarchical structure with roughness on both the micro- and nanoscale. It is of great interest to create durable surfaces with the so-called "Lotus effect" for many important applications. In this study, hierarchically structured surfaces with Lotus-effect properties were fabricated using micro- and nanosized hydrophobic silica particles and a simple spray method. In addition, hierarchically structured surfaces were prepared by spraying a nanoparticulate coating over a micropatterned surface. To examine the similarities between surfaces using microparticles versus a uniform micropattern as the microstructure, CA and CAH were compared across a range of pitch values for the two types of microstructures. Wear experiments were performed using an atomic force microscope (AFM), a ball-on-flat tribometer, and a water jet apparatus to verify multiscale wear resistance. These surfaces have potential uses in engineering applications requiring Lotus-effect properties and high durability. 相似文献