首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The photophysical properties and photoswitching scheme of the reversible photoswitchable green fluorescent protein-like fluorescent proteins Dronpa-2 and Dronpa-3 were investigated by means of ensemble and single-molecule fluorescence spectroscopy and compared to those of the precursor protein Dronpa. The faster response to light and the faster dark recovery of the new mutants observed in bulk also hold at the single-molecule level. Analysis of the single-molecule traces allows us to extract the efficiencies and rate constants of the pathways involved in the forward and backward switching, and we find important differences when comparing the mutants to Dronpa. We rationalize our results in terms of a higher conformational freedom of the chromophore in the protein environment provided by the beta-can. This thorough understanding of the photophysical parameters has allowed us to optimize the acquisition parameters for camera-based sub-diffraction-limit imaging with these photochromic proteins. We show that Dronpa and its mutants are useful for fast photoactivation-localization microscopy (PALM) using common wide-field microscopy equipment, as individual fluorescent proteins can be localized several times. We provide a new approach to achieve fast PALM by introducing simultaneous two-color stroboscopic illumination.  相似文献   

2.
The study of the structural reorganization and photophysical properties of Zn-Cytc using the single-molecule and ensemble-averaged spectroscopy shows that the photoblinking behaviors of single-Zn-Cytc depend on the folded and unfolded structures, whereas the fluorescence dynamics of Zn-Cytc observed in the bulk phase are hardly affected by the conformational change of a protein.  相似文献   

3.
Using the combination of fluorescence resonance energy transfer (FRET) and fluorescence correlation spectroscopy (FCS) technique, we investigate the mechanism and dynamics of the pH-induced conformational change of i-motif DNA in the bulk phases and at the single-molecule level. Despite numerous studies on i-motif that is formed from cytosine (C)-rich strand at slightly acidic pH, its detailed conformational dynamics have been rarely reported. Using the FRET technique to provide valuable information on the structure of biomolecules such as a protein and DNA, we clearly show that the partially folded species as well as the single-stranded structure coexist at neutral pH, supporting that the partially folded species may exist substantially in vivo and play an important role in a process of gene expression. By measuring the FCS curves of i-motif, we observed the gradual decrease of the diffusion coefficient of i-motif with increasing pH. The quantitative analysis of FCS curves supports that the gradual decrease of diffusion coefficient (D) associated with the conformational change of i-motif is not only due to the change in the intermolecular interaction between i-motif and solvent accompanied by the increase of pH but also due to the change of the shape of DNA. Furthermore, FCS analysis showed that the intrachain contact formation and dissociation for i-motif are 5-10 times faster than that for the open form. The fast dynamics of i-motif with a compact tetraplex is due to the intrinsic conformational changes at the fluorescent site including the motion of alkyl chain connecting the dye to DNA, whereas the slow intrachain contact formation observed from the open form is due to the DNA motion corresponding to an early stage interaction in the folding process of the unstructured open form.  相似文献   

4.
The spectroscopic properties of Calcium Green 2 (CG-2), a dual-fluorophore Ca(2+) indicator dye, were characterized by a combination of steady state and time-resolved ensemble spectroscopic measurements, molecular mechanics calculations and single-molecule fluorescence spectroscopy. It was found that in Ca(2+) free solutions, CG-2 exists primarily as a highly quenched intramolecular dimer, but when bound to Ca(2+), the molecule adopts an extended, fluorescent conformation. The difference in emission properties of these two CG-2 conformations is explained in terms of simple exciton theory. Through single-molecule fluorescence measurements, we have shown that the bulk increase in ensemble fluorescence intensity correlates with a simple statistical increase in the number of fluorescent molecules in solution. In addition, we have also observed that the majority of CG-2 molecules photobleach in a single step, despite the molecule possessing two distinct fluorophores. A small fraction of molecules photobleach in multiple steps or show a series of transitions between emissive and nonemissive fluorescent states ("blinking"). We rationalize these photophysical phenomena using a simple model based on dipole-dipole F?rster coupling between fluorophores in conjunction with irreversible photodamage to one of the constituent chromophores.  相似文献   

5.
Modern fluorescence microscopy applications go along with increasing demands for the employed fluorescent dyes. In this work, we compared antifading formulae utilizing a recently developed reducing and oxidizing system (ROXS) with commercial antifading agents. To systematically test fluorophore performance in fluorescence imaging of biological samples, we carried out photobleaching experiments using fixed cells labeled with various commonly used organic dyes, such as Alexa 488, Alexa 594, Alexa 647, Cy3B, ATTO 550, and ATTO 647N. Quantitative evaluation of (i) photostability, (ii) brightness, and (iii) storage stability of fluorophores in samples mounted in different antifades (AFs) reveal optimal combinations of dyes and AFs. Based on these results we provide guidance on which AF should preferably be used with a specific dye. Finally, we studied the antifading mechanisms of the commercial AFs using single-molecule spectroscopy and reveal that these empirically selected AFs exhibit similar properties to ROXS AFs.  相似文献   

6.
We have measured the activation energy (E act) of translational diffusion for a dissolved fluorescent dye in bulk and within an ultrathin liquid film formed on a solid substrate. The experiments were performed using the single-molecule sensitive technique of fluorescence correlation spectroscopy. From the temperature-dependent measurements, we have determined that the activation energy for a few nanometer thick fluid film increases by a factor of approximately 3-4 compared to bulk liquid. The results are confirmed for two distinctly different systems in regard to molecular shape, tetrakis (2-ethylhexoxy) silane and hexadecane.  相似文献   

7.
Wu CY  Huang CK  Chung CY  Huang IP  Hwu Y  Yang CS  Lai YK  Lo LW  Chiang SY 《The Analyst》2011,136(10):2111-2118
Dual color fluorescence cross correlation spectroscopy (FCCS) was used to investigate quantitatively the binding kinetics of tumor necrosis factor (TNFα) with TNFα antibody (anti-TNFα) following fluorescent labeling. Through the analysis of the auto correlation curves of fluorescence correlation spectroscopy (FCS), diffusion coefficients of 100.06 ± 4.9 μm(2) s(-1) and 48.96 ± 2.52 μm(2) s(-1) for Alexa488-TNFα and Atto647N-anti-TNFα were obtained. In addition, the calculated hydrodynamic diameters of the Alexa488-TNFα and Atto647N-anti-TNFα were approximately 4.89 ± 0.24 nm and 9.99 ± 0.52 nm, respectively, which agrees with the values of 5.20 ± 1.23 nm and 9.28 ± 0.86 nm for the native TNFα and the anti-TNFα as determined from dynamic light scattering measurements. For the binding kinetics, association (k(on)) and dissociation (k(off)) rate constants were (1.13 ± 0.08) × 10(4) M(-1) s(-1) and (1.53 ± 0.19) × 10(-3) s(-1) while the corresponding dissociation constant (K(d)) at 25 °C was (1.36 ± 0.10) × 10(-7) M. We believe this is the first report on the binding kinetics for TNFα-antibody recognition in the homogeneous phase. Using this technology, we have shown that controlled experiments can be performed to gain insight into molecular mechanisms involved in the immune response.  相似文献   

8.
Single-molecule fluorescence microscopy was used to investigate the dynamics of perylene diimide (PDI) molecules in thin supported polystyrene (PS) films at temperatures up to 135 °C. Such high temperatures, so far unreached in single-molecule spectroscopy studies, were achieved using a custom-built setup which allows for restricting the heated mass to a minimum. This enables temperature-dependent single-molecule fluorescence studies of structural dynamics in the temperature range most relevant to the processing and to applications of thermoplastic materials. In order to ensure that polymer chains were relaxed, a molecular weight of 3000 g/mol, clearly below the entanglement length of PS, was chosen. We found significant heterogeneities in the motion of single PDI probe molecules near T(g). An analysis of the track radius of the recorded single-probe molecule tracks allowed for a distinction between mobile and immobile molecules. Up to the glass transition temperature in bulk, T(g,bulk), probe molecules were immobile; at temperatures higher than T(g,bulk) + 40 K, all probe molecules were mobile. In the range between 0 and 40 K above T(g,bulk) the fraction of mobile probe molecules strongly depends on film thickness. In 30-nm thin films mobility is observed at lower temperatures than in thick films. The fractions of mobile probe molecules were compared and rationalized using Monte Carlo random walk simulations. Results of these simulations indicate that the observed heterogeneities can be explained by a model which assumes a T(g) profile and an increased probability of probe molecules remaining at the surface, both effects caused by a density profile with decreasing polymer density at the polymer-air interface.  相似文献   

9.
We present a detailed study of the photophysical properties of a tetraphenoxy-substituted perylene bisimide derivative. The probe molecules were immobilized in a Shpol'skii matrix of hexadecane and investigated by single-molecule spectroscopy at cryogenic temperatures. By using single-molecule spectroscopic techniques we reveal the triplet substate kinetics and the fluorescence quantum yield, and we provide an estimate for the S1-S0 transition dipole moment.  相似文献   

10.
聚合物单分子力谱的研究进展   总被引:2,自引:0,他引:2  
在单分子水平研究聚合物体系的分子内及分子间相互作用, 对于揭示其结构-性能的关系, 进而实现对相应功能的调控极为重要. 基于原子力显微镜技术(AFM)的单分子力谱, 由于其操作简单且适用面广, 在单分子研究领域得到了广泛的应用. 本文概括了该技术在生物高分子及合成高分子体系的研究进展. 对于生物高分子体系, 主要介绍了核酸(DNA/RNA)、 蛋白质和多糖(淀粉)的单分子力谱研究及利用各自力学指纹谱对其它分子间的相互作用的研究. 对于合成高分子体系, 主要介绍了聚合物的一级结构与单链弹性的关系及溶剂和聚集态结构等对高分子单链力学性质的影响规律.  相似文献   

11.
We report on the directional F?rster resonance energy transfer (FRET) process taking place in single molecules of a first (T1P4) and a second (T2P8) generation of a perylenemonoimide (P)-terrylenediimide (T)-based dendrimer in which the chromophores are separated by rigid polyphenylene arms. At low excitation powers, single-molecule detection and spectroscopy of T1P4 and T2P8 dendrimers point to a highly efficient directional FRET from P donors to the central T acceptor, optical excitation at 488 nm resulting in exclusively acceptor emission in the beginning of the detected fluorescence intensity. Donor emission is seen only upon the bleaching of the acceptor. High-resolution time-resolved single-molecule fluorescence data measured with a microchannel plate photomultiplier reveal, for T2P8, a broad range of FRET rates as a result of a broad range of distances and orientations experienced by the donor-acceptor dendrimers when immobilized in a polymer matrix. Single-molecule data from T2P8 on 488 nm excitation are indicative for the presence, after terrylenediimide bleaching, of a P-P excited dimer characterized by a broad emission spectrum peaking around 600 nm and by fluctuating fluorescence decay times. At high excitation powers, single T1P4 and T2P8 molecules display simultaneous emission from both donor and acceptor chromophores. The effect, called "exciton blockade", occurs due to the presence of multiple excitations in a single molecule.  相似文献   

12.
13.
We report the observation of the redox state of the blue copper protein azurin on the single-molecule level. The fluorescence of a small fluorophore attached to the protein is modulated by the change in absorption of the copper center via fluorescence resonance energy transfer (FRET). In our model system, the fluorescence label Cy5 was coupled to azurin from Pseudomonas aeruginosa via cysteine K27C. The Cy5 fluorescence was partially quenched by the absorption of the copper center of azurin in its oxidized state. In the reduced state, absorption is negligible, and thus no quenching occurs. We report on single-molecule measurements, both in solution by using fluorescence correlation spectroscopy (FCS) combined with fluorescence intensity distribution analysis (FIDA), and on surfaces by using wide-field fluorescence microscopy.  相似文献   

14.
Single-molecule force spectroscopy is used to observe the irreversible extension of a gem-dibromocyclopropane (gDBC)-functionalized polybutadiene under tension, a process akin to polymer necking at a single-molecule level. The extension of close to 28% in the contour length of the polymer backbone occurs at roughly 1.2 nN (tip velocity of 3 μm/s) and is attributed to the force-induced isomerization of the gDBCs into 2,3-dibromoalkenes. The rearrangement represents a possible new mechanism for localized stress relief in polymers and polymer networks under load, and the quantification of the force dependency provides a benchmark value for further studies of mechanically triggered chemistry in bulk polymers.  相似文献   

15.
In this perspective, we focus our discussion on how the single-molecule spectroscopy and statistical analysis are able to reveal enzyme hidden properties, taking the study of T4 lysozyme as an example. Protein conformational fluctuations and dynamics play a crucial role in biomolecular functions, such as in enzymatic reactions. Single-molecule spectroscopy is a powerful approach to analyze protein conformational dynamics under physiological conditions, providing dynamic perspectives on a molecular-level understanding of protein structure-function mechanisms. Using single-molecule fluorescence spectroscopy, we have probed T4 lysozyme conformational motions under the hydrolysis reaction of a polysaccharide of E. coli B cell walls by monitoring the fluorescence resonant energy transfer (FRET) between a donor-acceptor probe pair tethered to T4 lysozyme domains involving open-close hinge-bending motions. Based on the single-molecule spectroscopic results, molecular dynamics simulation, a random walk model analysis, and a novel 2D statistical correlation analysis, we have revealed a time bunching effect in protein conformational motion dynamics that is critical to enzymatic functions. Bunching effect implies that conformational motion times tend to bunch in a finite and narrow time window. We show that convoluted multiple Poisson rate processes give rise to the bunching effect in the enzymatic reaction dynamics. Evidently, the bunching effect is likely common in protein conformational dynamics involving in conformation-gated protein functions. In this perspective, we will also discuss a new approach of 2D regional correlation analysis capable of analyzing fluctuation dynamics of complex multiple correlated and anti-correlated fluctuations under a non-correlated noise background. Using this new method, we are able to map out any defined segments along the fluctuation trajectories and determine whether they are correlated, anti-correlated, or non-correlated; after which, a cross correlation analysis can be applied for each specific segment to obtain a detailed fluctuation dynamics analysis.  相似文献   

16.
Fan C  Hsiang JC  Dickson RM 《Chemphyschem》2012,13(4):1023-1029
Fluorescence modulation offers the opportunity to detect low-concentration fluorophore signals within high background. Applicable from the single-molecule to bulk levels, we demonstrate long-wavelength optical depopulation of dark states that otherwise limit Cy5 fluorescence intensity. By modulated excitation of a long-wavelength Cy5 transient absorption, we dynamically modulate Cy5 emission. The frequency dependence enables specification of the dark-state timescales enabling optical-demodulation-based signal recovery from high background. These dual-laser illumination schemes for high-sensitivity fluorescence-signal recovery easily improve signal-to-noise ratios by well over an order of magnitude, largely by discrimination against background. Previously limited to very specialized dyes, our utilization of long-lived dark states in Cy5 enables selective detection of this very common single-molecule and bulk fluorophore. Although, in principle, the "dark state" can arise from any photoinduced process, we demonstrate that cis-trans photoisomerization, with its unique transient absorption and lifetime enables this sensitivity boosting, long-wavelength modulation to occur in Cy5. Such studies underscore the need for transient absorption studies on common fluorophores to extend the impact of fluorescence modulation for high-sensitivity fluorescence imaging in a much wider array of applications.  相似文献   

17.
18.
Nanocontainers (NCs) were prepared from amphiphilic triblock copolymers, having an average molecular weight of around 8000 g/mol, by using previously published preparation methods consisting of dispersing the polymer in an aqueous buffer solution containing molecules for encapsulation. A small molecular weight fluorophore, sulforhodamine B, as well as the fluorescent protein avidin labeled with Alexa 488 were encapsulated, and the resulting nanocontainers were characterized using fluorescence correlation spectroscopy (FCS) and fluorescence cross-correlation spectroscopy (FCCS). Nanocontainer size determination by FCS is very robust and compares well with results obtained from photon correlation spectroscopy: the measured diameters of the polymeric nanocontainers vary between 140 and 172 nm. Encapsulation of fluorescent molecules was determined by evaluating the molecular brightness of nanocontainers with an encapsulated fluorescently labeled protein (avidin-Alexa 488). Results indicate that the number of encapsulated avidin-Alexa 488 molecules corresponds well with the initial concentration of the fluorescently labeled protein and the encapsulated volume. A nanocontainer binding assay was developed using biotinylated fluorescently labeled nanocontainers. Binding of biotinylated nanocontainers to fluorescently labeled streptavidin was followed by fluorescence cross-correlation spectroscopy. The intrinsic dissociation constant, K(d), of labeled streptavidin to the ligand-modified nanocontainers is 1.7 +/- 0.4 x 10(-8) M, and about 1921 +/- 357 molecules of labeled streptavidin are bound to each nanocontainer.  相似文献   

19.
This study examined the ability of a real-time dual-color detection system to allow direct observations of the kinetics of temperature-dependent protein-protein interaction at a single-molecule level. The primary target protein was an Alexa Fluor® 488-labeled actin conjugate, which had been pre-incubated with an unlabeled rabbit anti-actin antibody (IgG). The complementary fluorescent protein was Alexa Fluor® 633-labeled goat anti-rabbit IgG antibody, which interacts with the rabbit anti-actin antibody (IgG) bound to the Alexa Fluor® 488-labeled actin conjugate. The individual protein molecules labeled with different fluorescent dyes in solution were effectively focused, interacted with the other protein molecules at 500 aM, and detected directly in real-time using the dual-wavelength (λex = 488 and 635 nm) laser-induced fluorescence detection system. The kinetics of the protein-protein interactions were examined at different temperatures (12-32 °C). At concentrations in the aM range, the number of bound complex molecules through the protein-protein interaction decreased gradually with time at a given temperature, and increased with decreasing temperature at a set time. A high concentration (above 500 pM) of the protein sample caused aggregation and nonspecific binding of the protein molecules, even though the protein molecules were not an example of complementary binding. The results demonstrated that the real-time kinetics of a protein-protein interaction could be analyzed effectively at the single-molecule level without any time delay using the real-time dual-color detection system.  相似文献   

20.
In this work we investigate a new fluorescent molecular switch based on the interconversion between the fluorescent zwitterionic form (ZW1) and the non-fluorescent anionic state (MC2) of a spirocyclic Meisenheimer complex of 1,3,5-trinitrobenzene. Density functional theory molecular orbital calculations reveal that photo-induced electron transfer from a guanidine group to the trinitrocyclohexadiene fluorophore of the complex quenches the emission from MC2. Protonation, as well as coordination of other Lewis acids to the guanidine group, suppress the quenching mechanism and allow the complex to fluoresce. In agreement with the calculations, reversible on-off fluorescence switching of the ZW1-MC2 bulk system occurs by protonation-deprotonation of the guanidine moiety upon acid-base addition. Interestingly, spectroelectrochemical ensemble measurements show that switching of the ZW1-MC2 pair can also be attained electrochemically, thus unraveling the versatile functioning of this system. The ultimate limit of monitoring the reversible on-off operation of individual switch molecules is reached by means of single-molecule fluorescence spectroscopy, which demonstrates the potential of the ZW1-MC2 system to be used as a true single-molecule switch on the nanometer scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号