首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The treatment of Cr(III)(X(4)SQ)(3) (SQ = o-semiquinonate; X = Cl and Br) with acetonitrile affords trans-Cr(III)(X(4)SQ)(X(4)Cat)(CH(3)CN)(2) (X = Cl (1) and Br (2)). In the presence of 2,2'-bipyridine (bpy) or 3,4,7,8-tetramethyl-1,10-phenanthrene (tmphen), the reaction affords Cr(III)(X(4)SQ)(X(4)Cat)(bpy).nCH(3)CN (X = Cl, n = 1 (3); X = Br, n = 0.5 (4)) or Cr(III)(X(4)SQ)(X(4)Cat)(tmphen) (X = Cl (5) and Br (6)), respectively. All of the complexes show a ligand-based mixed-valence (LBMV) state with SQ and Cat ligands. The LBMV state was confirmed by the presence of the interligand intervalence charge-transfer band. Spectroscopic studies in several solvent media demonstrate that the ligand dissociation included in the conversion of Cr(III)(X(4)SQ)(3) to 1-6 occurs only in solvents with relatively high polarity. On the basis of these results, the effects of solvent media were examined and an equilibrium, Cr(III)(X(4)SQ)(3) <--> Cr(III)(X(4)BQ)(X(4)SQ)(X(4)Cat) (BQ = o-benzoquinone), is proposed by assuming an interligand electron transfer induced by solvent polarity.  相似文献   

2.
A series of redox isomers of [CrIII(X4SQ)(X4Cat)2]2-, [CrIII(X4SQ)2(X4Cat)]-, and [CrIII(X4SQ)3]0 (X = Cl and Br, SQ = semiquinonate, and Cat = catecholate) have been synthesized and characterized as charge-transfer (CT) compounds with metallocenium cations: (CoIIICp2)2[CrIII(Cl4SQ)(Cl4Cat)2] (1), (CoIIICp2)2[CrIII(Br4SQ)(Br4Cat)2] (2), (FeIIICp2)[CrIII(Cl4SQ)2(Cl4Cat)].C6H6 (4), (FeIIICp2)[CrIII(Br4SQ)2(Br4Cat)].CS2 (5), and (FeIIICp2)[CrIII(Cl4SQ)2(Cl4Cat)][CrIII(Cl4SQ)3] (6). First, the oxidation states of the chromium complexes are strongly dependent on the redox potentials of the metallocenes used. The CoIICp2, exhibiting stronger reduction power than FeIICp2, is useful for two-electron reduction of the [CrIII(X4SQ)3]0, affording [CrIII(X4SQ)(X4Cat)2]2- (1 and 2), which are first isolated and crystallographically characterized in the solid state. In contrast the reaction with FeIICp2 affords only [CrIII(X4SQ)2(X4Cat)]- (4 and 5). Second, solvents influence crystal structures of these compounds. The solvent set of C6H6/CS2 gives 1:1:C6H6 compound 4 with unique charged anions, [CrIII(Cl4SQ)2(Cl4Cat)]-, while the other set, n-C6H12/CS2, affords 1:2 compound 6 including the two redox isomers, [CrIII(Cl4SQ)2(Cl4Cat)]- and [CrIII(Cl4SQ)3]0. The [CrIII(X4SQ)(X4Cat)2]2- anions in 1 and 2 show no significant interconnection between them (discrete type), while the [CrIII(X4SQ)2(X4Cat)]- anions in 4-6 show one-dimensional column-type structures with the aid of intermolecular stacking interactions of the ligand moieties. The anions in 4 show additional stacking interaction with the [FeIIICp2]+ to form one-dimensional ...[D][A][S][D][A]... (D = [FeIIICp2]+, A = [CrIII(Cl4SQ)2(Cl4Cat)]-, and S = C6H6) type mixed-stack arrangements similar to that of previously reported (CoIIICp2)[CrIII(Cl4SQ)2(Cl4Cat)].C6H6 (3). Compound 6 forms a two-dimensional sheet structure where the two redox isomers, [CrIII(Cl4SQ)2(Cl4Cat)]- and [CrIII(Cl4SQ)3]0, are included. The sheet is regarded as a mixed-valence molecular assembly. Two types of the anions, [CrIII(X4SQ)(X4Cat)2]2- (1 and 2) and [CrIII(X4SQ)2(X4Cat)]- (4-6), exhibiting an intramolecular mixed-valence state, show intramolecular intervalence CT transition (IVCT) from the Cat to the SQ at near 5800 and 4300 cm-1, respectively, both in the solution and in the solid states. The intermolecular mixed-valence state of 6 was characterized by absorption spectroscopy, electric conductivity, and SQUID magnetometry. Interestingly, this mixed-valence state of the chromium module is dependent on the redox active nature of the coordinated ligands.  相似文献   

3.
Ultrafast photochemistry of the complexes trans(X,X)-[Ru(X)(2)(CO)(2)(bpy)] (X = Cl, Br, I) was studied in order to understand excited-state reactivity of equatorial CO ligands, coordinated trans to the 2,2'-bipyridine ligand (bpy). TD-DFT calculations have identified the lowest electronic transitions and singlet excited states as mixed X -->bpy/Ru --> bpy ligand to ligand/metal to ligand charge transfer (LLCT/MLCT). Picosecond time-resolved IR spectroscopy in the region of nu(CO) vibrations has revealed that, for X = Cl and Br, subpicosecond CO dissociation is accompanied by bending of the X-Ru-X moiety, producing a pentacoordinated intermediate trans(X,X)-[Ru(X)(2)(CO)(bpy)]. Final movement of an axial halide ligand to the vacant equatorial position and solvent (CH(3)CN) coordination follows with a time constant of 13-15 ps, forming the photoproduct cis(X,X)-[Ru(X)(2)(CO)(CH(3)CN)(bpy)]. For X = I, the optically populated (1)LLCT/MLCT excited state undergoes a simultaneous subpicosecond CO dissociation and relaxation to a triplet IRuI-localized excited state which involves population of an orbital that is sigma-antibonding with respect to the axial I-Ru-I bonds. Vibrationally relaxed photoproduct cis(I,I)-[Ru(I)(2)(CO)(CH(3)CN)(bpy)] is formed with a time constant of ca. 55 ps. The triplet excited state is unreactive, decaying to the ground state with a 155 ps lifetime. The experimentally observed photochemical intermediates and excited states were assigned by comparing calculated (DFT) and experimental IR spectra. The different behavior of the chloro and bromo complexes from that of the iodo complex is caused by different characters of the lowest triplet excited states.  相似文献   

4.
Hydrothermal reactions of 1,2,4-triazole with the appropriate copper salt have provided eight structurally unique members of the Cu/triazolate/X system, with X = F-, Cl-, Br-, I-, OH-, and SO4(2-). The anionic components X of [Cu3(trz)4(H2O)3]F2 (1) and [Cu6(trz)4Br]Cu4Br4(OH) (4) do not participate in the framework connectivity, acting as isolated charge-compensating counterions. In contrast, the anionic subunits X of [Cu(II)Cu(I)(trz)Cl2] (2), [Cu6(trz)4Br2] (3), [Cu(II)Cu(I)(trz)Br2] (5), [Cu3(trz)I2] (6), [Cu6(II)Cu2(I)(trz)6(SO4)3(OH)2(H2O)] (8), and [Cu4(trz)3]OH.7.5H2O (9.7.5H2O) are intimately involved in the three-dimensional connectivities. The structure of [Cu(II)Cu(I)(trz)2][Cu3(I)I4] (7) is constructed from two independent substructures: a three-dimensional cationic {Cu2(trz)2}n(n+) component and {Cu3I4}n(n-) chains. Curiously, four of the structures are mixed-valence Cu(I)/Cu(II) materials: 2, 5, 7, and 8. The only Cu(II) species is 1, while 3, 4, 6, and 9.7.5H2O exhibit exclusively Cu(I) sites. The magnetic properties of the Cu(II) species 1 and of the mixed-valence materials 5, 7, 8, and the previously reported [Cu3(trz)3OH][Cu2Br4] have been studied. The temperature-dependent magnetic susceptibility of 1 conforms to a simple isotropic model above 13 K, while below this temperature, there is weak ferromagnetic ordering due to spin canting of the antiferromagnetically coupled trimer units. Compounds 5 and 7 exhibit magnetic properties consistent with a one-dimensional chain model. The magnetic data for 8 were fit over the temperature range 2-300 K using the molecular field approximation with J = 204 cm(-1), g = 2.25, and zJ' = -38 cm(-1). The magnetic properties of [Cu3(trz)3OH][Cu2Br4] are similar to those of 8, as anticipated from the presence of similar triangular {Cu3(trz)3(mu3-OH)}(2+) building blocks. The Cu(I) species 3, 4, 6, and 9 as well as the previously reported [Cu(5)(trz)3Cl2] exhibit luminescence thermochromism. The spectra are characterized by broad emissions, long lifetimes, and significant Stokes' shifts, characteristic of phosphorescence.  相似文献   

5.
Coordination of Cu(I) halides with N,N'-dimethylimidazole selone (dmise) and thione (dmit) ligands was examined by treating CuX (X = Cl, Br, I) with one or two equivalents of dmise or dmit. The reaction of CuI and CuBr with one molar equivalent of dmise results in unusual selenium-bridged tetrameric Cu(4)(μ-dmise)(4)(μ-X)(2)X(2) copper complexes with average Cu-Se bond lengths of 2.42 ? and a Cu(2)(μ-X)(2) core (X = I (1) or Br (6)) that's in a rhomboidal structure. The reaction of CuX (X = Cl, Br, and I) with two equivalents of dmit or dmise results in trigonal planar Cu(I) complexes of two different conformations with the formula Cu(dmit)(2)X (3a, 3b, 4, and 7) or Cu(dmise)(2)X (2, 5, and 8) with average Cu-S and Cu-Se bond lengths of 2.23 ? and 2.34 ?, respectively. The coordination geometry around the copper center in complexes 1 to 8 is determined by the type of halide and chalcogenone ligand used, intramolecular π-π interactions, and short contact interactions between X-H (X = I, Br, Cl, Se or S). The theoretical DFT calculations are in good agreement with experimental X-ray structural data and indicate that dmise ligands are required for formation of the tetrameric complexes 1 and 6. Electrochemical studies show that the trigonal copper selone complexes have more negative potentials relative to analogous copper thione complexes by an average of 108 mV.  相似文献   

6.
The tripodal ligands NP(3)(tris[2-(diphenylphosphino)ethyl]amine) and PP(3)(tris[2-(diphenylphosphino)ethyl]phosphine), form five-coordinate [Pd(NP(3))X]X [X = Cl (1), Br (2)], [M(PP(3))X]X [M = Pd: X = Cl (4), Br (5), I (6); M = Pt, X = Cl (7), Br (8), I (9)] and four-coordinate[Pd(NP(3))I]I (3) complexes containing three fused rings around the metal. The interaction between Au(tdg)X (tdg = thiodiglycol; X = Cl, Br) or AuI and the respective ionic halo complexes 1-9 in a 1:1 stoichiometric ratio occurs via a ring-opening reaction with formation of the heterobimetallic systems PdAu(NP(3))X(3)[X = Cl (11), Br (12), I (13)], [MAu(PP(3))X(2)]X [M = Pd: X = Cl (14), Br (15), I (16); M = Pt: X = Cl (17), Br (18), I (19)]. The cations of complexes 17 and 18 were shown, by X-ray diffraction, to contain a distorted square-planar Pt(II) arrangement (Pt(P(2)P)X) where PP(3) is acting as tridentate chelating ligand and an almost linear PAuX moiety bearing the dangling phosphorus formed in the ring-opening process. PPh(3) coordinates to Au(I) and not to M(II) when added in excess to 14 and 17. Complexes 14-17 and [Pt(P(4))](BPh(4))(2) (10) (P4=linear tetraphosphine) also react with A(I), via chelate ring-openings to give MAu(2)(PP(3))X(4) [M = Pd: X = Cl (20), Br (21), I (22); M = Pt: X = Cl (23)] and [Pt(2)Au(2)(mu-Cl)(2)(mu-P(4))(2)](BPh(4))(4) (24), respectively.  相似文献   

7.
The bonding of N(2) to the five-coordinate complexes [FeX(depe)(2)](+), X = Cl (1a) and Br (1b), has been investigated with the help of X-ray crystallography, spectroscopy, and quantum-chemical calculations. Complexes 1a and 1b are found to have an XP(4) coordination that is intermediate between square-pyramidal and trigonal-bipyramidal. M?ssbauer and optical absorption spectroscopy coupled with angular overlap model (AOM) calculations reveal that 1a and 1b have (3)B(1) ground states deriving from a (xz)(1)(z(2))(1) configuration. The zero-field splitting for this state is found to be 30-35 cm(-1). In contrast, the analogous dinitrogen complexes [FeX(N(2))(depe)(2)](+), X = Cl (2a) and Br (2b), characterized earlier are low-spin (S = 0; Wiesler, B. E.; Lehnert, N.; Tuczek, F.; Neuhausen, J.; Tremel, W. Angew. Chem, Int. Ed. 1998, 37, 815-817). N(2) bonding and release in these systems are thus spin-forbidden. It is shown by density functional theory (DFT) calculations of the chloro complex that the crossing from the singlet state (ground state of 2a) to the triplet state (ground state of 1a) along the Fe-N coordinate occurs at r(C) = 2.4 A. Importantly, this intersystem crossing lowers the enthalpy calculated for N(2) release by 10-18 kcal/mol. The free reaction enthalpy Delta G degrees for this process is calculated to be 4.7 kcal/mol, which explains the thermal instability of N(2) complex 2a with respect to the loss of N(2). The differences in reactivity of analogous trans hydrido systems are discussed.  相似文献   

8.
Hou L  Li D  Shi WJ  Yin YG  Ng SW 《Inorganic chemistry》2005,44(22):7825-7832
Six mixed-valence Cu(I)Cu(II) compounds containing 4'-(4-pyridyl)-2,2':6',2' '-terpyridine (L1) or 4'-(2-pyridyl)-2,2':6',2' '-terpyridine (L2) were prepared under the hydrothermal and ambient conditions, and their crystal structures were determined by single-crystal X-ray diffraction. Selection of CuCl(2).2H(2)O or Cu(CH(3)COO)(2).H(2)O with the L1 ligand and NH(4)SCN, KI, or KBr under hydrothermal conditions afforded 1-dimensional mixed-valence Cu(I)Cu(II) compounds [Cu(2)(L1)(mu-1,1-SCN)(mu-Cl)Cl](n) (1), [Cu(2)(L1)(mu-I)(2)Cl](n) (2), [Cu(2)(L1)(mu-Br)(2)Br](n) (3), and [Cu(2)(L1)(mu-1,3-SCN)(2)(SCN)](n)(4), respectively. Compound 5, prepared by layering with CuSCN and L1, is a 2-dimensional bilayer structure. In compounds 1-5, the L1 ligand and X (X = Cl, Br, I, SCN) linked between monovalent and divalent copper atoms resulting in the formation of mixed-valence rectangular grid-type M(4)L(4) or M(6)L(6) building blocks, which were further linked by X (X = Cl, Br, I, SCN) to form 1- or 2-dimensional polymers. The sizes of M(4)L(4) units in 1-4 were fine-tuned by the sizes of X linkers. Reaction of Cu(CH(3)COO)(2).H(2)O with L2 and NH(4)SCN under hydrothermal conditions gave mixed-valence Cu(I)Cu(II) compound [Cu(2)(L2)(mu-1,3-SCN)(3)](n) (6). Unlike those in 1-5, the structure of 6 was constructed from thiocyanate groups and the pendant pyridine of L2 left uncoordinated. The temperature-dependent magnetic susceptibility studies on compounds 1 and 4 showed the presence of mixed-valence electronic structure.  相似文献   

9.
By interaction of MoX(3)(THF)(3) with [Cat]X in THF, the salts [Cat][MoX(4)(THF)(2)] have been synthesized [X = I, Cat = PPh(4), NBu(4), NPr(4), (Ph(3)P)(2)N; X = Br, Cat = NBu(4), PPh(4) (Ph(3)P)(2)N]. Mixed-halide species [MoX(3)Y(THF)(2)](-) (X, Y = Cl, Br, I) have also been generated in solution and investigated by (1)H-NMR. When the tetraiodo, tetrabromo, and mixed bromoiodo salts are dissolved in CH(2)Cl(2), clean loss of all coordinated THF is observed by (1)H-NMR. On the other hand, [MoCl(4)(THF)(2)](-) loses only 1.5 THF/Mo. The salts [Cat](3)[Mo(3)X(12)] (X = Br, I) have been isolated from [Cat][MoX(4)(THF)(2)] or by running the reaction between MoX(3)(THF)(3) and [Cat]X directly in CH(2)Cl(2). The crystal structure of [PPh(4)](3)[Mo(3)I(12)] exhibits a linear face-sharing trioctahedron for the trianion: triclinic, space group P&onemacr;; a = 11.385(2), b = 12.697(3), c = 16.849(2) ?; alpha = 76.65(2), beta = 71.967(12), gamma = 84.56(2) degrees; Z = 1; 431 parameters and 3957 data with I > 2sigma(I). The metal-metal distance is 3.258(2) ?. Structural and magnetic data are consistent with the presence of a metal-metal sigma bond order of (1)/(2) and with the remaining 7 electrons being located in 7 substantially nonbonding orbitals. The ground state of the molecule is predicted to be subject to a Jahn-Teller distortion, which is experimentally apparent from the nature of the thermal ellipsoid of the central Mo atom. The [Mo(3)X(12)](3)(-) ions reacts with phosphines (PMe(3), dppe) to form products of lower nuclearity by rupture of the bridging Mo-X bonds.  相似文献   

10.
Tight contact ion pairs of general formula {Pt(H(2)-R(2)-dto)(2)(2+),(X(-))(2)} have been prepared, and their absorption spectra and luminescence properties (at room temperature in dichloromethane fluid solution and at 77 K in butyronitrile rigid matrix) have been studied (dto = dithiooxamide; R = methyl, X = Cl (1); R = butyl, X = Cl (2); R = benzyl, X = Cl (3); R = cyclohexyl, X = Cl (4); R = cyclohexyl, X = Br (5); R = cyclohexyl, X = I (6)). The absorption spectra of all the compounds are dominated by moderately strong Pt(dpi)/S(p) to dithiooxamide (pi) charge transfer (Pt/S --> dto CT) bands in the visible region (epsilon in the 10(4)-10(5) M(-)(1) cm(-)(1) range). Absorption features are also present at higher energies, due to pi-pi transitions centered in the dto ligands (ligand centered, LC). All the compounds exhibit a unstructured luminescence band in fluid solution at room temperature, with the maximum centered in the 700-730 nm range. The luminescence bands are blue-shifted about 4000 cm(-)(1) on passing to the rigid matrix at 77 K. Luminescence lifetimes are on the 10(-)(8)-10(-)(7) s time scale at room temperature and 1 order of magnitude longer at 77 K. Luminescence is assigned to triplet Pt/S --> dto CT excited states in all cases. Compounds 3-6 also exhibit a second higher-energy luminescence band at room temperature, centered at about 610 nm, attributed to a LC excited state. Charge transfer interactions between halides and dto ligands destabilize dto-centered orbitals, affecting the energy of Pt/S --> dto CT transitions and states. The X counterions and X --> dto CT levels are proposed to play a role in promoting excited state conversion between LC and Pt/S --> dto CT levels. The R substituents on the nitrogen atoms of the dto ligands influence the absorption and photophysical properties of the compounds, by affecting proximity of the ion pairs. The possibility to functionalize the R substituents may open the way to interface these luminescent compounds with desired substrates and to construct supramolecular assemblies.  相似文献   

11.
By reaction of [NBu(4)](2)[Pt(2)(&mgr;-C(6)F(5))(2)(C(6)F(5))(4)] with 1,8-naphthyridine (napy), [NBu(4)][Pt(C(6)F(5))(3)(napy)] (1) is obtained. This compound reacts with cis-[Pt(C(6)F(5))(2)(THF)(2)] to give the dinuclear derivative [NBu(4)][Pt(2)(&mgr;-napy)(&mgr;-C(6)F(5))(C(6)F(5))(4)] (2). The reaction of several HX species with 2 results in the substitution of the bridging C(6)F(5) by other ligands (X) such as OH (3), Cl (4), Br (5), I (6), and SPh (7), maintaining in all cases the naphthyridine bridging ligand. The structure of 3 was determined by single-crystal X-ray diffraction. The compound crystallizes in the monoclinic system, space group P2(1)/n, with a = 12.022(2) ?, b = 16.677(3) ?, c = 27.154(5) ?, beta = 98.58(3) degrees, V = 5383.2(16) ?(3), and Z = 4. The structure was refined to residuals of R = 0.0488 and R(w) = 0.0547. The complex consists of two square-planar platinum(II) fragments sharing a naphthyridine and OH bridging ligands, which are in cis positions. The short Pt-Pt distance [3.008(1) ?] seems to be a consequence of the bridging ligands.  相似文献   

12.
Molecular structures of 12 porphyrin analogues, Fe(III)(EtioP)X(1(a)-1(d)), Fe(III)(EtioCn)X(2(a)-2(d)), and Fe(III)(Etio-Pc)X(3(a)-3(d)), where X = F (a), Cl (b), Br (c), and I (d), are determined on the basis of X-ray crystallography. Combined analyses using M?ssbauer, (1)H NMR, and EPR spectroscopy as well as SQUID magnetometry have revealed that 3(d) exhibits a quite pure S = 3/2 spin state with a small amount of an S = 5/2 spin admixture. In contrast, all the other complexes show the S = 5/2 spin state with a small amount of the S = 3/2 spin admixture. The structural and spectroscopic data indicate a strong correlation between the spin states of the complexes and the core geometries such as Fe-N bond lengths, cavity areas, and DeltaFe values.  相似文献   

13.
The reaction of 9,10-phenanthrenequinone (PQ) with [M(II)(H)(CO)(X)(PPh(3))(3)] in boiling toluene leads to the homolytic cleavage of the M(II)-H bond, affording the paramagnetic trans-[M(PQ)(PPh(3))(2)(CO)X] (M = Ru, X = Cl, 1; M = Os, X = Br, 3) and cis-[M(PQ)(PPh(3))(2)(CO)X] (M = Ru, X = Cl, 2; M = Os, X = Br, 4) complexes. Single-crystal X-ray structure determinations of 1, 2·toluene, and 4·CH(2)Cl(2), EPR spectra, and density functional theory (DFT) calculations have substantiated that 1-4 are 9,10-phenanthrenesemiquinone radical (PQ(?-)) complexes of ruthenium(II) and osmium(II) and are defined as trans-[Ru(II)(PQ(?-))(PPh(3))(2)(CO)Cl] (1), cis-[Ru(II)(PQ(?-))(PPh(3))(2)(CO)Cl] (2), trans-[Os(II)(PQ(?-))(PPh(3))(2)(CO) Br] (3), and cis-[Os(II)(PQ(?-))(PPh(3))(2)(CO)Br] (4). Two comparatively longer C-O [average lengths: 1, 1.291(3) ?; 2·toluene, 1.281(5) ?; 4·CH(2)Cl(2), 1.300(8) ?] and shorter C-C lengths [1, 1.418(5) ?; 2·toluene, 1.439(6) ?; 4·CH(2)Cl(2), 1.434(9) ?] of the OO chelates are consistent with the presence of a reduced PQ(?-) ligand in 1-4. A minor contribution of the alternate resonance form, trans- or cis-[M(I)(PQ)(PPh(3))(2)(CO)X], of 1-4 has been predicted by the anisotropic X- and Q-band electron paramagnetic resonance spectra of the frozen glasses of the complexes at 25 K and unrestricted DFT calculations on 1, trans-[Ru(PQ)(PMe(3))(2)(CO)Cl] (5), cis-[Ru(PQ)(PMe(3))(2)(CO)Cl] (6), and cis-[Os(PQ)(PMe(3))(2)(CO)Br] (7). However, no thermodynamic equilibria between [M(II)(PQ(?-))(PPh(3))(2)(CO)X] and [M(I)(PQ)(PPh(3))(2)(CO)X] tautomers have been detected. 1-4 undergo one-electron oxidation at -0.06, -0.05, 0.03, and -0.03 V versus a ferrocenium/ferrocene, Fc(+)/Fc, couple because of the formation of PQ complexes as trans-[Ru(II)(PQ)(PPh(3))(2)(CO)Cl](+) (1(+)), cis-[Ru(II)(PQ)(PPh(3))(2)(CO)Cl](+) (2(+)), trans-[Os(II)(PQ)(PPh(3))(2)(CO)Br](+) (3(+)), and cis-[Os(II)(PQ)(PPh(3))(2)(CO)Br](+) (4(+)). The trans isomers 1 and 3 also undergo one-electron reduction at -1.11 and -0.96 V, forming PQ(2-) complexes trans-[Ru(II)(PQ(2-))(PPh(3))(2)(CO)Cl](-) (1(-)) and trans-[Os(II)(PQ(2-))(PPh(3))(2)(CO)Br](-) (3(-)). Oxidation of 1 by I(2) affords diamagnetic 1(+)I(3)(-) in low yields. Bond parameters of 1(+)I(3)(-) [C-O, 1.256(3) and 1.258(3) ?; C-C, 1.482(3) ?] are consistent with ligand oxidation, yielding a coordinated PQ ligand. Origins of UV-vis/near-IR absorption features of 1-4 and the electrogenerated species have been investigated by spectroelectrochemical measurements and time-dependent DFT calculations on 5, 6, 5(+), and 5(-).  相似文献   

14.
PX(4) (+)[Al(OR)(4)](-) (X=I: 1 a, X=Br: 1 b) was prepared from X(2), PX(3), and Ag[Al(OR)(4)] [R=C(CF(3))(3)] in CH(2)Cl(2) at -30 degrees C in 69-86 % yield. P(2)X(5) (+) salts were prepared from 2 PX(3) and Ag[Al(OR)(4)] in CH(2)Cl(2) at -30 degrees C yielding almost quantitatively P(2)X(5) (+)[Al(OR)(4)](-) (X=I: 3 a, X=Br: 3 b). The phosphorus-rich P(5)X(2) (+) salts arose from the reaction of cold (-78 degrees C) mixtures of PX(3), P(4), and Ag[Al(OR)(4)] giving P(5)X(2) (+)[Al(OR)(4)](-) (X=I: 4 a, X=Br: 4 b) with a C(2v)-symmetric P(5) cage. Silver salt metathesis presumably generated unstable PX(2) (+) cations from PX(3) and Ag[Al(OR)(4)] (X=Br, I) that acted as electrophilic carbene analogues and inserted into the Xbond;X (Pbond;X/Pbond;P) bond of X(2) (PX(3)/P(4)) leading to the highly electrophilic and CH(2)Cl(2)-soluble PX(4) (+) (P(2)X(5) (+)/P(5)X(2) (+)) salts. Reactions that aimed to synthesize P(2)I(3) (+) from P(2)I(4) and Ag[Al(OR)(4)] instead led to anion decomposition and the formation of P(2)I(5)(CS(2))(+)[(RO)(3)Al-F-Al(OR)(3)](-) (5). All salts were characterized by variable-temperature solution NMR studies (3 b also by (31)P MAS NMR), Raman and/or IR spectroscopy as well as X-ray crystallography (with the exception of 4 a). The thermochemical volumes of the Pbond;X cations are 121 (PBr(4) (+)), 161 (PI(4) (+)), 194 (P(2)Br(5) (+)), 271 (P(2)I(5) (+)), and 180 A(3) (P(5)Br(2) (+)). The observed reactions were fully accounted for by thermochemical calculations based on (RI-)MP2/TZVPP ab initio results and COSMO solvation enthalpy calculations (CH(2)Cl(2) solution). The enthalpies of formation of the gaseous Pbond;X cations were derived as +764 (PI(4) (+)), +617 (PBr(4) (+)), +749 (P(2)I(5) (+)), +579 (P(2)Br(5) (+)), +762 (P(5)I(2) (+)), and +705 kJ mol(-1) (P(5)Br(2) (+)). The insertion of the intermediately prepared carbene analogue PX(2) (+) cations into the respective bonds were calculated, at the (RI-)MP2/TZVPP level, to be exergonic at 298 K in CH(2)Cl(2) by Delta(r)G(CH(2)Cl(2))=-133.5 (PI(4) (+)), -183.9 (PBr(4) (+)), -106.5 (P(2)I(5) (+)), -81.5 (P(2)Br(5) (+)), -113.2 (P(5)I(2) (+)), and -114.5 kJ mol(-1) (P(5)Br(2) (+)).  相似文献   

15.
Five-coordinate iron(III) 2,7,12,17-tetrapropylporphycene (TPrPc)Fe(III)X (X = C(6)H(5)O(-), Cl(-), Br(-), I(-), ClO(4)(-)) complexes have been investigated. The (1)H NMR spectra demonstrate downfield shifts for pyrrole resonances [(TPrPc)Fe(III)(C(6)H(5)O), 65.3 ppm; (TPrPc)Fe(III)Cl, 28.5 ppm] but large upfield ones for (TPrPc)Fe(III)Br (-7.8 ppm), (TPrPc)Fe(III)I (-49.4 ppm), and (TPrPc)Fe(III)ClO(4) (-77.1 ppm) (294 K, CD(2)Cl(2)). The pyrrole chemical shifts span the remarkable +70 to -80 ppm range. The variable-temperature (1)H NMR spectra of (TPrPc)Fe(III)X demonstrate anti-Curie behavior with a sign reversal for (TPrPc)Fe(III)Cl. These behaviors are consistent with the admixed S = 3/2, 5/2 ground electronic state with a dominating contribution of the S = 3/2 one. In terms of the chemical shift, (TPrPc)Fe(III)(ClO(4)) can be considered as an example of the purest S = 3/2 state in the investigated series. The extent of the S = 5/2 contribution in the admixed S = 3/2, 5/2 ground electronic state, as gradated solely the basis of the pyrrole proton paramagnetic shifts, is controlled by the strength of the axial ligand, following the magnetochemical series (Evans, D. R.; Reed, C. A. J. Am. Chem. Soc. 2000, 122, 4660). Significantly iron(III) 2,7,12,17-tetrapropylporphycene, soluble in typical organic solvents, can be considered as a universal framework to classify the ligand strength in a magnetochemical series, consistently using the beta-H pyrrole paramagnetic shifts as a fundamental criterion. The structure of (TPrPc)Fe(III)Cl has been determined by X-ray crystallography. The iron is five-coordinate with bonds of nearly equal length to the four pyrrole nitrogen atoms (Fe-N in the range 1.983(5)-2.006(6) A). The iron lies 0.583(1) A out of the mean plane of the macrocycle and 0.502(5) A out of the mean N(4) plane. In the solid, pairs of molecules are positioned about the center of symmetry so there is face-to-face pi-pi contact. The mean plane separation is 3.38 A, and the lateral shift of the porphycene center along the Fe-N bond is 4.490 A. The distance from one porphycene center to the other is 5.62 A, and the iron-iron separation is 6.304(2) A.  相似文献   

16.
The exploration of the NiX(2)/py(2)CO/Et(3)N (X = F, Cl, Br, I; py(2)CO = di-2-pyridyl ketone; Et(3)N = triethylamine) reaction system led to the tetranuclear [Ni(4)Cl(2){py(2)C(OH)O}(2){py(2)C(OMe)O}(2)(MeOH)(2)]Cl(2)·2Et(2)O (1·2Et(2)O) and [Ni(4)Br(2){py(2)C(OH)O}(2){py(2)C(OMe)O}(2)(MeOH)(2)]Br(2)·2Et(2)O (2·2Et(2)O) and the trinuclear [Ni(3){py(2)C(OMe)O}(4)]I(2)·2.5MeOH (3·2.6MeOH), [Ni(3){py(2)C(OMe)O}(4)](NO(3))(0.65)I(1.35)·2MeOH (4·2MeOH) and [Ni(3){py(2)C(OMe)O}(4)](SiF(6))(0.8)F(0.4)·3.5MeOH (5·3.5MeOH) aggregates. The presence of the intermediate size Cl(-) and Br(-) anions resulted in planar tetranuclear complexes with a dense hexagonal packing of cations and donor atoms (tetramolybdate topology) where the X(-) anions participate in the core acting as bridging ligands. The F(-) and I(-) anions do not favour the above arrangement resulting in triangular complexes with an isosceles topology. The magnetic properties of 1-3 have been studied by variable-temperature dc, variable-temperature and variable-field ac magnetic susceptibility techniques and magnetization measurements. All complexes are high-spin with ground states S = 4 for 1 and 2 and S = 3 for 3.  相似文献   

17.
The reaction of (NBu(n)(4))[Mn(8)O(6)Cl(6)(O(2)CPh)(7)(H(2)O)(2)] (1) with 2-(hydroxymethyl)pyridine (hmpH) or 2-(hydroxyethyl)pyridine (hepH) gives the Mn(II)(2)Mn(III)(10) title compounds [Mn(12)O(8)Cl(4)(O(2)CPh)(8)(hmp)(6)] (2) and [Mn(12)O(8)Cl(4)(O(2)CPh)(8)(hep)(6)] (3), respectively, with X = Cl. Subsequent reaction of 3 with HBr affords the Br(-) analogue [Mn(12)O(8)Br(4)(O(2)CPh)(8)(hep)(6)] (4). Complexes 2.2Et(2)O.4CH(2)Cl(2), 3.7CH(2)Cl(2), and 4.2Et(2)O.1.4CH(2)Cl(2) crystallize in the triclinic space group P1, monoclinic space group C2/c, and tetragonal space group I4(1)/a, respectively. Complexes 2 and 3 represent a new structural type, possessing isomeric [Mn(III)(10)Mn(II)(2)O(16)Cl(2)] cores but with differing peripheral ligation. Complex 4 is essentially isostructural with 3. A magnetochemical investigation of complex 2 reveals an S = 6 or 7 ground state and frequency-dependent out-of-phase signals in ac susceptibility studies that establish it as a new class of single-molecule magnet. These signals occur at temperatures higher than those observed for all previously reported single-molecule magnets that are not derived from [Mn(12)O(12)(O(2)CR)(16)(H(2)O)(x)]. A detailed investigation of forms of complex 2 with different solvation levels reveals that the magnetic properties of 2 are extremely sensitive to the latter, emphasizing the importance to the single-molecule magnet properties of interstitial solvent molecules in the samples. In contrast, complexes 3 and 4 are low-spin molecules with an S = 0 ground state.  相似文献   

18.
Two new pentadentate, pendent arm macrocyclic ligands of the type 1-alkyl-4,7-bis(4-tert-butyl-2-mercaptobenzyl)-1,4,7-triazacyclononane where alkyl represents an isopropyl, (L(Pr))(2-), or an ethyl group, (L(Et))(2-), have been synthesized. It is shown that they bind strongly to ferric ions generating six-coordinate species of the type [Fe(L(alk))X]. The ground state of these complexes is governed by the nature of the sixth ligand, X: [Fe(III)(L(Et))Cl] (2) possesses an S = 5/2 ground state as do [Fe(III)(L(Et))(OCH(3))] (3) and [Fe(III)(L(Pr))(OCH(3))] (4). In contrast, the cyano complexes [Fe(III)(L(Et))(CN)] (5) and [Fe(III)(L(Pr))(CN)] (6) are low spin ferric species (S = 1/2). The octahedral [FeNO](7) nitrosyl complex [Fe(L(Pr))(NO)] (7) displays spin equilibrium behavior S = 1/2<==>S = (3)/(2) in the solid state. Complexes [Zn(L(Pr))] (1), 4.CH(3)OH, 5.0.5toluene.CH(2)Cl(2), and 7.2.5CH(2)Cl(2) have been structurally characterized by low-temperature (100 K) X-ray crystallography. All iron complexes have been carefully studied by zero- and applied-field M?ssbauer spectroscopy. In addition, Sellmann's complexes [Fe(pyS(4))(NO)](0/1+) and [Fe(pyS(4))X] (X = PR(3), CO, SR(2)) have been studied by EPR and M?ssbauer spectroscopies and DFT calculations (pyS(4) = 2,6-bis(2-mercaptophenylthiomethyl)pyridine(2-)). It is concluded that the electronic structure of 7 with an S = 1/2 ground state is low spin ferrous (S(Fe) = 0) with a coordinated neutral NO radical (Fe(II)-NO) whereas the S = 3/2 state corresponds to a high spin ferric (S(Fe) = 5/2) antiferromagnetically coupled to an NO(-) anion (S = 1). The S = 1/2<==>S = 3/2 equilibrium is then that of valence tautomers rather than that of a simple high spin<==>low spin crossover.  相似文献   

19.
Pandey KK 《Inorganic chemistry》2003,42(21):6764-6767
Electronic and molecular structure has been investigated in the diethylaluminum cation-like system Et(2)Al(CB(11)H(6)X(6)) (1, X = Cl; 2, X = Br) and neutral compounds AlX(3) (X = Cl, Br, Me, C(6)H(5)) with DFT B3LYP and BP86 levels of theory. The calculated geometries of Et(2)Al(CB(11)H(6)X(6)) (1, X = Cl; 2, X = Br) are in excellent agreement with those determined experimentally by X-ray crystallography. The Al-X bond distances 2.442, 2.445 A in 1 and 2.579, 2.589 A in 2 are longer than those expected for single bonds based on covalent radius predictions (Al-Cl = 2.15 A and Al-Br = 2.32 A) and those observed for bridged Al-X-Al bonds (2.21 A in Al(2)Cl(6), 2.33 A in Al(2)Br(6)) and are close to sum of ionic radii of Al(3+) and X(-) (Al-Cl = 2.35 A and Al-Br = 2.50 A). The optimized geometries of the neutral compounds AlX(3) (X = Cl, Br, Me(3), C(6)H(5)) at BP86/TZ2P show Al-Cl = 2.088 A in AlCl(3), Al-Br = 2.234 A in AlBr(3), Al-C = 1.973 A in AlMe(3), Al-C = 2.255 A in Al(C(6)F(5))(3). These bond distances are similar to those expected for single bonds based on covalent radius predictions. The calculated charge distribution indicates that the aluminum atom carries a significant positive charge while the ethyl and carborane groups are negatively charged. The Cl and Br atoms in compounds 1 and 2 are slightly positive while, in neutral compounds AlX(3) (X = Cl, Br, Me(3), C(6)H(5)), X is negatively charged. Energy decomposition analysis of Et(2)Al(delta)(+)(carborane)(delta)(-) shows that the bonding between the fragments is more than half electrostatic. The ionic character of the Al...Cl bonds in compound 1(59.8%) is greater than the Al.Br bonds in the compound 2 (57.9%). This quantifies and gives legitimacy to the designation of these types of compounds as "ion-like". The Al-X bonding in AlX(3) is mainly covalent with percentage ionic character 28.2% in AlCl(3), 31.5% in AlBr(3), 25.6% in AlMe(3), 18.4% in Al(C(6)F(5))(3).  相似文献   

20.
Magnetic interactions in solid‐state tantalum cluster compounds have been evidenced by using magnetic susceptibility measurements and corroborated by broken‐symmetry DFT calculations. The three selected compounds are based on [Ta6X12(H2O)6]3+ (X=Cl or/and Br) units with edge‐bridged Ta6 octahedral clusters. Although two of them crystallise in the tetragonal space group I41/a, all compounds exhibit a similar arrangement of paramagnetic clusters related to the diamond structural framework (Fd$\bar 3Magnetic interactions in solid-state tantalum cluster compounds have been evidenced by using magnetic susceptibility measurements and corroborated by broken-symmetry DFT calculations. The three selected compounds are based on [Ta(6)X(12)(H(2)O)(6)](3+) (X=Cl or/and Br) units with edge-bridged Ta(6) octahedral clusters. Although two of them crystallise in the tetragonal space group I4(1)/a, all compounds exhibit a similar arrangement of paramagnetic clusters related to the diamond structural framework (Fd ?3m space group). Magnetic parameters were fitted by using the [5,4] Padé approximant of high-temperature series expansion of susceptibility for the Heisenberg model (S=1/2) in the diamond framework, assuming only nearest-neighbouring interactions. Such a model appropriately describes magnetic-susceptibility measurements at temperatures T>0.7|J|/k. The magnetic interaction parameter J between two [Ta(6)Cl(12)(H(2)O)(6)](3+) clusters is estimated to be -64.28(7) cm(-1) ; it has been enhanced by replacing several chlorine inner ligands with bromine ones (J=-123(3) cm(-1) for two [Ta(6)Br(7.7(1))Cl(4.3(1))(H(2)O)(6)](3+) clusters) and is strongest between two bromine [Ta(6)Br(12)(H(2)O)(6)](3+) clusters with a value of -155(1) cm(-1) . Broken-symmetry DFT calculations within spin-dimer analysis confirmed this trend. Those interactions can be explained on the basis of the overlap between singly occupied a(2u) orbitals localised on neighbouring clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号