首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Farnesyl diphosphate (FPP) analogues have proven to be both potent inhibitors of protein-farnesyltransferase (FTase) and valuable probes for the investigation of the function of prenylated proteins. Previously, we have demonstrated that certain 3-substituted and 7-substituted FPP analogues can act as inhibitors of FTase, while others are effective alternative substrates. We have now utilized our vinyl triflate-mediated route to synthesize the first seven FPP variants bearing substituents in both the 3- and 7-positions of the isoprene unit. Despite their exceptional steric bulk with respect to FPP itself, six of the seven analogues bind to FTase. Two of the analogues are potent inhibitors of the enzyme, but a more striking finding is that three FPP variants (4a, 4b, and 4f) are efficient alternative substrates for FTase.  相似文献   

2.
Placzek AT  Gibbs RA 《Organic letters》2011,13(14):3576-3579
Through the use of a 1,2-metalate rearrangement, six 7-substituted farnesol analogs were generated in a concise manner. This new synthetic route allowed us to quickly prepare several diverse farnesyl diphosphate analogs with interesting biological activities against mammalian protein-farnesyl transferase.  相似文献   

3.
Substrate analogues for isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), where the C3 methyl groups were replaced by chlorine, were synthesized and evaluated as substrates for avian farnesyl diphosphate synthase (FPPase). The IPP analogue (3-ClIPP) was a cosubstrate when incubated with dimethylallyl diphosphate (DMAPP) or geranyl diphosphate (GPP) to give the corresponding chlorinated analogues of geranyl diphosphate (3-ClGPP) and farnesyl diphosphate (3-ClFPP), respectively. No products were detected in incubations of 3-ClIPP with 3-ClDMAPP. Incubation of IPP with 3-ClDMAPP gave 11-ClFPP as the sole product. Values of K(M)(3-ClIPP) (with DMAPP) and K(M)(3-ClDMAPP) (with IPP) were similar to those for IPP and DMAPP; however, values of k(cat) for both analogues were substantially lower. These results are consistent with a dissociative electrophilic alkylation mechanism where the rate-limiting step changes from heterolytic cleavage of the carbon-oxygen bond in the allylic substrate to alkylation of the double bond of the homoallylic substrate.  相似文献   

4.
A set of synthetic approaches were developed and applied to the synthesis of eight frame-shifted farnesyl diphosphate (FPP) analogs. These analogs bear increased or decreased methylene units between the double bonds and/or diphosphate moieties of the isoprenoid structure. Evaluation versus mammalian FTase revealed that small structural changes can lead to dramatic changes in substrate ability.  相似文献   

5.
Protein prenylation is a posttranslational lipid modification in which C(15) and C(20) isoprenoid units are linked to specific protein-derived cysteine residues through a thioether linkage. This process is catalyzed by a class of enzymes called prenyltransferases that are being intensively studied due to the finding that Ras protein is farnesylated coupled with the observation that mutant forms of Ras are implicated in a variety of human cancers. Inhibition of this posttranslational modification may serve as a possible cancer chemotherapy. Here, the syntheses of two new farnesyl diphosphate (FPP) analogues containing photoactive benzophenone groups are described. Each of these compounds was prepared in six steps from dimethylallyl alcohol. Substrate studies, inhibition kinetics, photoinactivation studies, and photolabeling experiments are also included; these experiments were performed with a number of protein prenyltransferases from different sources. A X-ray crystal structure of one of these analogues bound to rat farnesyltransferase illustrates that they are good substrate mimics. Of particular importance, these new analogues can be enzymatically incorporated into Ras-based peptide substrates allowing the preparation of molecules with photoactive isoprenoids that may serve as valuable probes for the study of prenylation function. Photoaffinity labeling of human protein geranylgeranyltransferase with (32)P-labeled forms of these analogues suggests that the C-10 locus of bound geranylgeranyl diphosphate (GGPP) is in close proximity to residues from the beta-subunit of this enzyme. These results clearly demonstrate the utility of these compounds as photoaffinity labeling analogues for the study of a variety of protein prenyltransferases and other enzymes that employ FPP or GGPP as their substrates.  相似文献   

6.
[reaction: see text]. A directed library of anilinogeranyl diphosphate analogues of the isoprenoid farnesyl diphosphate has been prepared by solid-phase organic synthesis using a traceless linker strategy in moderate yield in three steps: reductive amination, bromination, and treatment with ((n-Bu)4N)3HP2O7.  相似文献   

7.
The synthesis of new bioisosteric analogues of farnesyl pyrophosphate where a vinyl pyrophosphonate replaced the pyrophosphate moiety is described. These compounds have been prepared using a Horner–Wadsworth–Emmons procedure and a modified Michelson reaction. They have been evaluated for the inhibition of farnesyl protein transferase. © 2002 Wiley Periodicals, Inc. Heteroatom Chem 13:654–661, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.10081  相似文献   

8.
Farnesylation is a posttranslational lipid modification in which a 15-carbon farnesyl isoprenoid is linked via a thioether bond to specific cysteine residues of proteins in a reaction catalyzed by protein farnesyltransferase (FTase). We synthesized analogues (3-6) of farnesyl pyrophosphate (FPP) to probe the range of modifications possible to the FPP skeleton which allow for efficient transfer by FTase. Photoaffinity analogues of FPP (5, 6) were prepared by substituting perfluorophenyl azide functional groups for the omega-terminal isoprene of FPP. Substituted anilines replace the omega-terminal isoprene in analogues 3 and 4. Compounds 3-5 were prepared by reductive amination of the appropriate anilines with 8-oxo-geranyl acetate, followed by ester hydrolysis, chlorination, and pyrophosphorylation. Additional substitution of three methylenes for the beta-isoprene of FPP gave photoprobe 6 in nine steps. Preparation of the analogues required TiCl(4)-mediated imine formation prior to NaBH(OAc)(3) reduction for anilines with a pK(a) < 1. The azide moiety was not affected by Ph(3)PCl(2) conversion of allylic alcohols 13-16 into corresponding chlorides 17-20. Analogues 3-6 are efficiently transferred to target N-dansyl-GCVLS peptide substrate by mammalian FTase. Comparison of analogue structures and kinetics of transfer to those of FPP reveals that ring fluorination and para substituents have little effect on the affinity of the analogue pyrophosphate for FTase and its transfer efficiency. These results are also supported with models of the analogue binding modes in the active site of FTase. The transferable azide photoprobe 5 photoinactivates FTase. Transferable analogues 5 and 6 allow the formation of appropriately posttranslationally modified photoreactive peptide probes of isoprene function.  相似文献   

9.
Eleven farnesyl diphosphate analogues, which contained omega-azide or alkyne substituents suitable for bioorthogonal Staudinger and Huisgen [3 + 2] cycloaddition coupling reactions, were synthesized. The analogues were evaluated as substrates for the alkylation of peptide cosubstrates by yeast protein farnesyl transferase. Five of the diphosphates were good alternative substrates for farnesyl diphosphate (FPP). Steady-state kinetic constants were measured for the active compounds, and the products were characterized by HPLC and LC-MS. Two of the analogues gave steady-state kinetic parameters (kcat and Km) very similar to those of the natural substrate.  相似文献   

10.
Koza DJ 《Organic letters》2000,2(6):815-817
[formula: see text] The synthesis of 7-substituted tetracycline derivatives has been accomplished in high yield from 7-halotetracyclines by modified Suzuki and Stille coupling protocols. These novel derivatives may serve as a new class of tetracycline antibiotics effective against multi-antibiotic-resistant bacteria.  相似文献   

11.
Asmarines are marine alkaloids, with a unique tetrahydro[1,4]diazepino-[1,2,3-g,h]purine (THDAP) structure and interesting biological properties. Three synthetic approaches were employed for the preparation of the THDAP system. Several N-9, of the purine, protecting groups were investigated. 15N-Chemical shifts measured from 15NH HMBC experiments for several compounds, that demonstrate the influence of various structural features on the 15N-resonances are reported.  相似文献   

12.
Bisphosphonates, known for their effectiveness in the treatment of osteoporosis, inhibit bone resorption via mechanisms that involve binding to bone mineral and cellular effects on osteoclasts. The major molecular target of nitrogen-containing bisphosphonates (N-BPs) in osteoclasts is farnesyl diphosphate synthase (FPPS). N-BPs likely inhibit this enzyme by mimicking one or more of the natural isoprenoid lipid substrates (GPP/DMAPP and IPP) but the mode of inhibition is not established. The active site of FPPS comprises a subsite for each substrate. Kinetic studies with recombinant human FPPS indicate that both potent (risedronate) and weak (NE-58051) enzyme inhibitors compete with GPP for binding to FPPS, however, binding to this site does not completely explain the difference in potency of the two inhibitors, suggesting that a second binding site may also be a target of bisphosphonate inhibition. Using the docking software suite Autodock, we explored a dual inhibitor binding mode for recombinant human FPPS. Experimental support for dual binding is suggested by Dixon plots for the inhibitors. N-BPs may inhibit by binding to both the GPP and a second site with differences in potency at least partly arising from inhibition at the second site.  相似文献   

13.
[formula: see text] A unified, stereospecific synthetic route to the three geometric isomers of (E,E)-farnesyl diphosphate (E,E-FPP) (1, 2, and 3) has been developed. The key feature of this synthesis is the ability to control the stereochemistry of triflation of the beta-ketoester 10 to give either 11 or 14. Preliminary evaluation of these compounds with protein-farnesyl transferase indicates that 1 and 2 are surprisingly effective substrates; however, Z,Z-FPP (3) is a poor substrate and a sub-micromolar inhibitor.  相似文献   

14.
15.
We report the results of an ITC (isothermal titration calorimetry) investigation of the binding of six bisphosphonates to the enzyme farnesyl diphosphate synthase (FPPS; EC 2.5.1.10) from Trypanosoma brucei. The bisphosphonates investigated were zoledronate, risedronate, ibandronate, pamidronate, 2-phenyl-1-hydroxyethane-1,1-bisphosphonate, and 1-(2,2-bisphosphonoethyl)-3-iodo pyridinium. At pH = 7.4, both risedronate and the phenylethane bisphosphonate bind in an enthalpy-driven manner (DeltaH approximately -9 to 10 kcal mol-1), but the other four bisphosphonates bind in an entropy-driven manner (DeltaS varying from 31.2 to 55.1 cal K-1 mol-1). However, at pH = 8.5, zoledronate binding switches from entropy to enthalpy-driven. The DeltaG results are highly correlated with FPPS inhibition results obtained using a radiochemical assay (R2 = 0.85, N = 11, P < 0.001). The DeltaH and DeltaS results are interpreted in terms of a model in which bisphosphonates with charged side chains have positive DeltaH values, due to the enthalpic cost of desolvation (due to strong ion-dipole interactions) and, likewise, a positive DeltaS, due to an increase in water entropy (both ligand and protein associated) on ligand binding to FPPS: the hydrophobic effect. For the neutral side chains (risedronate at pH 7.4, 8.5 and zoledronate at pH 8.5, as well as the phenylethane bisphosphonate), binding is overwhelmingly enthalpy-driven, with the enhanced activity of the basic side chain containing species being attributable to their becoming protonated in the active site. Given the large size of the bisphosphonate market and the potential importance of the development of these compounds for cancer immunotherapy and anti-parasitic chemotherapy, these results are of broad general interest in the context of the development of new, potent, and selective FPPS inhibitors.  相似文献   

16.
A general and efficient route to 2-substituted 1,3-cyclopentadiones 3 has been developed. This operationally simple, two-step procedure is amenable to multigram scale preparations of these useful synthetic intermediates. These compounds are then transformed to previously unknown, higher analogues of the Hajos-Parrish-Eder-Sauer-Wiechert ketone (enone 1, R = Me) following an enantioselective Robinson annulation.  相似文献   

17.
Coumarins modified with dipeptides were prepared by condensation of N-hydroxysuccinimide esters of 2-(3,4,8-substituted-2-oxo-2H-7-chromenyloxy)-and 2-(3,4-substituted-7-methyl-2-oxo-2H-5-chromenyloxy)acetic and-propionic acids with amino acids and dipeptides. __________ Translated from Khimiya Prirodnykh Soedinenii, No. 3, pp. 239–242, May–June, 2008.  相似文献   

18.
19.
The Pechmann condensation reaction was used to synthesize a number of 4-methyl-7-hydroxycoumarins possessing a chain of three carbon atoms at position 3.  相似文献   

20.
Isopentenyl diphosphate isomerase (IDI) catalyzes the interconversion of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). This is an essential step in the mevalonate entry into the isoprenoid biosynthetic pathway. The isomerization catalyzed by type I IDI involves protonation of the carbon-carbon double bond in IPP or DMAPP to form a tertiary carbocation, followed by deprotonation. Diene analogues for DMAPP (E-2-OPP and Z-2-OPP) and IPP (4-OPP) were synthesized and found to be potent active-site-directed irreversible inhibitors of the enzyme. X-ray analysis of the E.I complex between Escherichia coli IDI and 4-OPP reveals the presence of two isomers that differ in the stereochemistry of the newly formed C3-C4 double bond in the hydrocarbon chain of the inhibitor. In both adducts C5 of the inhibitor is joined to the sulfur of C67. In these structures the methyl group formed upon protonation of the diene moiety in 4-OPP is located near E116, implicating that residue in the protonation step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号