首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
High-pressure synthesis allows both fundamental and materials science research to gain unprecedented insight into the inner nature of materials properties at extreme environment conditions. Here, we report on the high-pressure synthesis and characterization of γ-Ca(3)N(2) and the high-pressure behavior of Mg(3)N(2). Investigation of M(3)N(2) (M = Ca, Mg) at high-pressure has been quite challenging due to the high reactivity of these compounds. Ex situ experiments have been performed using a multianvil press at pressures from 8 to 18 GPa (1000-1200 °C). Additional in situ experiments from 0 to 6 GPa (at RT) at the multianvil press MAX 80 (HASYLAB, Beamline F.2.1, Hamburg) have been carried out. The new cubic high-pressure phase γ-Ca(3)N(2) with anti-Th(3)P(4) defect structure exhibits a significant increase in coordination numbers compared to α-Ca(3)N(2). Contrary, Mg(3)N(2) shows decomposition starting at surprisingly low pressures, thereby acting as a precursor for Mg nanoparticle formation with bcc structure. Soft X-ray spectroscopy in conjunction with first principles DFT calculations have been used to explore the electronic structure and show that γ-Ca(3)N(2) is a semiconductor with inherent nitrogen vacancies.  相似文献   

2.
The structure of N,N-dimethylethylenediammonium pentachloroantimonate(III), [(CH3)2NH(CH2)2NH3][SbCl5], NNDP, was investigated at 100 and 15 K at ambient pressure, as well as at pressures up to 4.00 GPa at room temperature in the diamond-anvil cell. The stable structure at low temperatures and low pressures consists of isolated [SbCl5]2- anions and [(CH3)2NH(CH2)2NH3]2+ cations. The inorganic anions have a distorted square pyramidal geometry. They are arranged in linear chains parallel to the c axis. In contrast to the low-temperature studies, where no phase transition was detected, pressure induces a P2(1)/c --> P2(1)/n phase transition between 0.55 and 1.00 GPa, accompanied by a doubling of the a unit-cell parameter. This solid-solid transition results from changes in the electron configuration of the Sb(III) atom and formation of the Sb-Cl bridging bonds between inorganic polyhedra to form, at approximately 1.0 GPa, isolated [Sb2Cl10]4- units consisting of [SbCl6]3- octahedra and [SbCl5]2- square pyramids connected by a common corner. The intermolecular distances continuously decrease with further increase in pressure, and at approximately 3.1 GPa, zigzag [{SbCl5}n]2n- chains containing corner-sharing [SbCl6]3- octahedra are formed. The unit-cell volume of NNDP decreases by 18.15% between room pressure and 4.00 GPa. The linear distortions of the [SbCl5]2- and [SbCl6]3- polyhedra decrease with increasing pressure and decreasing temperature and indicate a reduction in the stereochemical activity of the lone electron pair on the Sb(III) atom.  相似文献   

3.
HP-Ca(2)Si(5)N(8) was obtained by means of high-pressure high-temperature synthesis utilizing the multianvil technique (6 to 12 GPa, 900 to 1200 degrees C) starting from the ambient-pressure phase Ca(2)Si(5)N(8). HP-Ca(2)Si(5)N(8) crystallizes in the orthorhombic crystal system (Pbca (no. 61), a=1058.4(2), b=965.2(2), c=1366.3(3) pm, V=1395.7(7)x10(6) pm(3), Z=8, R1=0.1191). The HP-Ca(2)Si(5)N(8) structure is built up by a three-dimensional, highly condensed nitridosilicate framework with N([2]) as well as N([3]) bridging. Corrugated layers of corner-sharing SiN(4) tetrahedra are interconnected by further SiN(4) units. The Ca(2+) ions are situated between these layers with coordination numbers 6+1 and 7+1, respectively. HP-Ca(2)Si(5)N(8) as well as hypothetical orthorhombic o-Ca(2)Si(5)N(8) (isostructural to the ambient-pressure modifications of Sr(2)Si(5)N(8) and Ba(2)Si(5)N(8)) were studied as high-pressure phases of Ca(2)Si(5)N(8) up to 100 GPa by using density functional calculations. The transition pressure into HP-Ca(2)Si(5)N(8) was calculated to 1.7 GPa, whereas o-Ca(2)Si(5)N(8) will not be adopted as a high-pressure phase. Two different decomposition pathways of Ca(2)Si(5)N(8) (into Ca(3)N(2) and Si(3)N(4) or into CaSiN(2) and Si(3)N(4)) and their pressure dependence were examined. It was found that a pressure-induced decomposition of Ca(2)Si(5)N(8) into CaSiN(2) and Si(3)N(4) is preferred and that Ca(2)Si(5)N(8) is no longer thermodynamically stable under pressures exceeding 15 GPa. Luminescence investigations (excitation at 365 nm) of HP-Ca(2)Si(5)N(8):Eu(2+) reveal a broadband emission peaking at 627 nm (FWHM=97 nm), similar to the ambient-pressure phase Ca(2)Si(5)N(8):Eu(2+).  相似文献   

4.
The alkali dicyanamides M[N(CN)2] (M=K, Rb) were synthesized through ion exchange, and the corresponding tricyanomelaminates M3[C6N9] were obtained by heating the respective dicyanamides. The thermal behavior of the dicyanamides and their reaction to form the tricyanomelaminates were investigated by temperature-dependent X-ray powder diffractometry and thermoanalytical measurements. Potassium dicyanamide K[N(CN)2] was found to undergo four phase transitions: At 136 degrees C the low-temperature modification alpha-K[N(CN)2] transforms to beta-K[N(CN)2], and at 187degrees C the latter transforms to the high-temperature modification gamma-K[N(CN)2], which melts at 232 degrees C. Above 310 degrees C the dicyanamide ions [N(CN)2]- trimerize and the resulting tricyanomelaminate K3[C6N9] solidifies. Two modifications of rubidium dicyanamide have been identified: Even at -25 degrees C, the a form slowly transforms to beta-Rb[N(CN)2] within weeks. Rb[N(CN)2] has a melting point of 190 degrees C. Above 260 degrees C the dicyanamide ions [N(CN)2]- of the rubidium salt trimerize in the melt and the tricyanomelaminate Rb3[C6N9] solidifies. The crystal structures of all phases were determined by powder diffraction methods and were refined by the Rietveld method. alpha-K[N(CN)2] (Pbcm, a = 836.52(1), b = 46.90(1), c =7 21.27(1) pm, Z = 4), gamma-K[N(CN)2] (Pnma, a = 855.40(3), b = 387.80(1), 1252.73(4) pm, Z = 4), and Rb[N(CN)2] (C2/c, a = 1381.56(2), b = 1000.02(1), c = 1443.28(2) pm, 116.8963(6) degrees, Z = 16) represent new structure types. The crystal structure of beta-K[N(CN)2] (P2(1/n), a = -726.92(1), b 1596.34(2), c = 387.037(5) pm, 111.8782(6) degrees, Z = 4) is similar but not isotypic to the structure of alpha Na[N(CN)2]. alpha-Rb[N(CN)2] (Pbcm, a = 856.09(1), b = 661.711(7), c = 765.067(9) pm, Z = 4) is isotypic with alpha-K[N(CN)2]. The alkali dicyanamides contain the bent planar anion [N(CN)2]- of approximate symmetry C2, (average bond lengths: C-N(bridge) 133, C-N(term) 113 pm; average angles N-C-N 170 degrees, C-N-C 120 degrees). K3[C6N9] (P2(1/c), a = 373.82(1), b = 1192.48(5), c = 2500.4(1) pm, beta = 101.406(3) degrees, Z = 4) and Rb,[C6N9] (P2(1/c), a = 389.93(2), b = 1226.06(6), c = 2547.5(1) pm, 98.741(5) degrees, Z=4) are isotypic and they contain the planar cyclic anion [C6N9]3-. Although structurally related, Na3[C6N9] is not isotypic with the tricyanomelaminates M3[C6N9] (M = K, Rb).  相似文献   

5.
Simple, nitrogen-rich, energetic salts of 5-nitrotetrazole   总被引:1,自引:0,他引:1  
A new family (ammonium, 1, hydrazinium, 2, guanidinium, 3, aminoguanidinium, 4, diamino-guanidinium, 5, and triaminoguanidinium, 6) of simple, nitrogen-rich energetic salts based on 5-nitro-2 H-tetrazole (HNT) were synthesized. In addition, the hemihydrate of 1 (1a) and the hydrate of 6 (6a) were also isolated. In all cases, stable salts were obtained and fully characterized by vibrational (IR, Raman) spectroscopy, multinuclear ((1)H, (13)C and (14)N) NMR spectroscopy, mass spectrometry, elemental analysis, and X-ray structure determination. Compounds 1and 2 crystallize in the monoclinic space group P2 1/c, 1a and 3 crystallize in C/2 c, 4 in P2 1/n, 5 in P2 1, 6 in orthorhombic P2 12 12 1, and 6a in triclinic P1. Initial safety testing (impact, friction, and electrostatic sensitivity) and thermal stability measurements (DSC) were also carried out. The NT salts all exhibit good thermal stabilities (decomposition above 150 degrees C). The constant volume energies of combustion (Delta c U(exp)) of 1-6 were experimentally determined by oxygen bomb calorimetry to be -1860(30) cal/g ( 1), -1770(30) cal/g ( 1a), -2110(150) cal/g (2), -2250(40) cal/g ( 3), -2470(30) cal/g (4), -2630(40) cal/g (5), -2690(50) cal/g (6), and -2520(50) cal/g (6a). Because of the significant experimental uncertainties obtained in these measurements, their validity was checked by way of quantum chemical calculation (MP2) of electronic energies and an approximation of lattice enthalpy. The predicted constant volume energies of combustion (Delta c U(pred)) calculated by this method were -2095.9 cal/g (1), -1975.7 cal/g ( 1a), -2362.4 cal/g (2), -2526.6 cal/g (3), -2654.6 cal/g (4), -2778.6 cal/g ( 5), -2924.0 cal/g (6), and -2741.4 cal/g ( 6a). From the experimentally determined density, chemical composition, and energies of formation (back calculated from the heats of combustion) the detonation pressures and velocities of 1 (7950 m/s, 23.9 GPa), 1a (7740 m/s, 22.5 GPa), 2(8750 m/s, 30.1 GPa), 3 (7500 m/s, 20.1 GPa) 4(8190 m/s, 24.7 GPa), 5(8230 m/s, 24.4 GPa), 6 (8480 m/s, 26.0 GPa) and 6a (7680 m/s, 20.7 GPa) were predicted using the EXPLO5 code.  相似文献   

6.
We have studied cyanuric acid (H(3)C(3)N(3)O(3)) at static pressures up to 8.1 GPa and simultaneous temperatures up to 750 K, using primarily infrared absorption spectroscopy and visual observation. The corresponding phase diagram compares favorably with theoretical predictions of metastable organic materials. Two reactions were observed and characterized; both are irreversible. Below 2 GPa, melting is accompanied by a decomposition reaction, and upon cooling, cyanuric acid is not recovered. Above 2 GPa, heating results in a solid product recoverable at ambient conditions. Corresponding infrared spectra suggest that pressure leads to the formation of heterocycles of increasing complexity and biological potential, with the composition determined by the pressure of formation. Cyanuric acid is of interest at these conditions because it and its monomer, isocyanic acid, are "prebiotic" compounds found in stellar dust clouds, meteorites, and other remnants of the early Earth.  相似文献   

7.
LiNbO(3) (LN), corundum (cor), and hexagonal (hex) phases of (In(1-x)M(x))MO(3) (x = 0.143; M = Fe(0.5)Mn(0.5)) were prepared. Their crystal structures were investigated with synchrotron X-ray powder diffraction, and their properties were studied by differential thermal analysis, magnetic measurements, and M?ssbauer spectroscopy. The LN-phase was prepared at high pressure of 6 GPa and 1770 K; it crystallizes in space group R3c with a = 5.25054(7) ?, c = 13.96084(17) ?, and has a long-range antiferromagnetic ordering near T(N) = 270 K. The cor- and hex-phases were obtained at ambient pressure by heating the LN-phase in air up to 870 and 1220 K, respectively. The cor-phase crystallizes in space group R-3c with a = 5.25047(10) ?, c = 14.0750(2) ?, and the hex-phase in space group P6(3)/mmc with a = 3.34340(18) ?, c = 11.8734(5) ?. T(N) of the cor-phase is about 200 K, and T(N) of the hex-phase is about 140 K. During irreversible transformations of LN-(In(1-x)M(x))MO(3) with the (partial) cation ordering, the In(3+), Mn(3+), and Fe(3+) cations become completely disordered in one crystallographic site of the corundum structure, and then they are (partially) ordered again in the hex-phase. LN-(In(1-x)M(x))MO(3) exhibits a reversible transformation to a perovskite GdFeO(3)-type structure (space group Pnma; a = 5.2946(3) ?, b = 7.5339(4) ?, c = 5.0739(2) ? at 10.3 GPa) at room temperature and pressure of about 5 GPa.  相似文献   

8.
The crystal structure of Li7[Mn(V)N4] was re-determined. Isolated tetrahedral [Mn(V)N4](7-) ions are arranged with lithium cations to form a superstructure of the CaF2 anti-type (P4bar3n, No. 218, a = 956.0(1) pm, Z = 8). According to measurements of the magnetic susceptibility, the manganese (tetrahedral coordination) is in a d(2) S = 1 state. Thermal treatment of Li7[Mn(V)N4] under argon in the presence of elemental lithium at various temperatures leads to Li24[Mn(III)N3]3N2, Li5[(Li1-xMnx)N]3, and Li2[(Li1-xMn(I)x)N], respectively. Li24[Mn(III)N3]3N2 (P3bar1c, No. 163, a = 582.58(6) pm, c = 1784.1(3) pm, Z = 4/3) crystallizes in a trigonal unit cell, containing slightly, but significantly nonplanar trigonal [MnN3](6-) units with C3v symmetry. Measurements of the magnetic susceptibility reveal a d(4) S = 1 spin-state for the manganese (trigonal coordination). Nonrelativistic spin-polarized DFT calculations with different molecular models lead to the conclusion that restrictions in the Li-N substructure are responsible for the distortion from planarity of the [Mn(III)N3](6-). Li5[(Li1-xMnx)N]3 (x = 0.59(1), P6bar2m, No. 189, a = 635.9(3) pm, c = 381.7(2) pm, Z = 1) is an isotype of Li5[(Li1-xNix)N]3 with manganese in an average oxidation state of about +1.6. The crystal structure is a defect variant of the alpha-Li3N structure type with the transition metal in linear coordination by nitrogen. Li2[(Li1-xMn(I)x)N] (x = 0.67(1), P6/mmm, No. 191, a = 371.25(4) pm, c = 382.12(6) pm, Z = 1) crystallizes in the alpha-Li3N = Li2[LiN] structure with partial substitution of the linearly nitrogen-coordinated Li-species by manganese(I). Measurements of the magnetic susceptibility are consistent with manganese (linear coordination) in a low-spin d(6) S = 1 state.  相似文献   

9.
Our first-principles computations show that the ground state of PbTiO3 under hydrostatic pressure transforms discontinuously from P4mm to R3c at 9 GPa. Spontaneous polarization decreases with increasing pressure so that the R3c phase transforms to the centrosymmetric Rc phase at around 27 GPa. The first-order phase transition between the tetragonal and rhombohedral phases is exceptional since there is no evidence for a bridging phase. The essential feature of the R3c and Rc phases is that they allow the oxygen octahedron to increase its volume VB at the expense of the cuboctahedral volume VA around a Pb ion. This is further supported by the fact that neither the R3m nor Cm phase, which keep the VA/VB ratio constant, is a ground state within the pressure range between 0 and 40 GPa. Thus, tetragonal strain is dominant up to 9 GPa, whereas at higher pressures, efficient compression through oxygen octahedra tilting plays the central role for PbTiO3. Previously predicted pressure induced colossal enhancement of piezoelectricity in PbTiO3 corresponds to unstable Cm and R3m phases. This suggests that the phase instability, in contrast to the polarization rotation, is responsible for the large piezoelectric properties observed in systems like Pb(Zr,Ti)O3 in the vicinity of the morphotropic phase boundary.  相似文献   

10.
1,2-Dichloroethane (DCE) was loaded into diamond anvil cells and compressed up to 30 GPa at room temperature. Pressure-induced transformations were probed using Raman spectroscopy. At pressures below 0.6 GPa, fluid DCE exists in two conformations, gauche and trans in equilibrium, which is shifted to gauche on compression. DCE transforms to a solid phase with exclusive trans conformation upon further compression. All the characteristic Raman shifts remain constant in fluid phase and move to higher frequencies in the solid phase with increasing pressure. At about 4-5 GPa, DCE transforms from a possible disordered phase into a crystalline phase as evidenced by the observation of several lattice modes and peak narrowing. At 8-9 GPa, dramatic changes in Raman patterns of DCE were observed. The splitting of the C-C-Cl bending mode at 325 cm-1, together with the observation of inactive internal mode at 684 cm-1 as well as new lattice modes indicates another pressure-induced phase transformation. All Raman modes exhibit significant changes in pressure dependence at the transformation pressure. The new phase remains crystalline, but likely with a lower symmetry. The observed transformations are reversible in the entire pressure region upon decompression.  相似文献   

11.
采用水热法合成了一种新的3-氨基吡啶砷钼多金属氧酸盐配合物(C5H7N2)3(AsMo12O40)·3C5H6N2·2H2O。 通过单晶X射线衍射、红外光谱、紫外光谱和差热-热重对其进行了表征。 用催化消除丙酮的反应为模式反应,测试了配合物的催化性能。 研究结果表明,标题配合物是由Keggin结构[AsMo12O40]3-杂多阴离子、[C5H7N2]+阳离子、[C5H6N2]分子和结晶水分子组成。 配合物属于单斜晶系,P21/n空间群;晶胞参数a=1.33820(12) nm,b=2.2542(2) nm,c=1.9848(2) nm,β=100.27(3)°,V=5.8912(10) nm3,Z=4,Rgt(F)=0.0590,wRref(F2)=0.1882。 配合物对催化消除丙酮具有较好的的活性,催化实验结果表明,160 ℃下,0.20 g的催化剂可将初始浓度均为1.3 g/m3,流速为4.5 mL/min的丙酮完全消除。  相似文献   

12.
We synthesized two high-pressure polymorphs PbNiO(3) with different structures, a perovskite-type and a LiNbO(3)-type structure, and investigated their formation behavior, detailed structure, structural transformation, thermal stability, valence state of cations, and magnetic and electronic properties. A perovskite-type PbNiO(3) synthesized at 800 °C under a pressure of 3 GPa crystallizes as an orthorhombic GdFeO(3)-type structure with a space group Pnma. The reaction under high pressure was monitored by an in situ energy dispersive X-ray diffraction experiment, which revealed that a perovskit-type phase was formed even at 400 °C under 3 GPa. The obtained perovskite-type phase irreversibly transforms to a LiNbO(3)-type phase with an acentric space group R3c by heat treatment at ambient pressure. The Rietveld structural refinement using synchrotron X-ray diffraction data and the XPS measurement for both the perovskite- and the LiNbO(3)-type phases reveal that both phases possess the valence state of Pb(4+)Ni(2+)O(3). Perovskite-type PbNiO(3) is the first example of the Pb(4+)M(2+)O(3) series, and the first example of the perovskite containing a tetravalent A-site cation without lone pair electrons. The magnetic susceptibility measurement shows that the perovskite- and LiNbO(3)-type PbNiO(3) undergo antiferromagnetic transition at 225 and 205 K, respectively. Both the perovskite- and LiNbO(3)-type phases exhibit semiconducting behavior.  相似文献   

13.
A new family of cyanide-based spin-crossover polymers with the general formula {Fe(5-Br-pmd)z[M(CN)x]y} [M=AgI (1), AuI (2), NiII (3), PdII (4), PtII (5); 5-Br-pmd=5-bromopyrimidine; z=1 or 2, x=2 or 4, and y=2 or 1] have been synthesized and characterized using single-crystal X-ray diffraction (XRD), X-ray powder diffraction (XRPD), magnetic susceptibility measurements, and differential scanning calorimetry (DSC). At 293 K, compound 1 presents the monoclinic space group C2/c, whereas at 120 K, it changes to the monoclinic space group P21/c. At 293 K, the crystal structure of 1 displays an uninodal three-dimensional network whose nodes, constituted of FeII, lie at the inversion center of an elongated octahedron. The equatorial bond lengths are defined by the N atoms of four [AgI(CN)2]- groups belonging to two crystallographically nonequivalent AgI atoms, Ag(1) and Ag(2). They are shorter than those of the axial positions occupied by the N atoms of the 5-Br-pmd ligands. The Fe-N average bond length of 2.1657(7) A is consistent with a high-spin (HS) state for the FeII ions. At 120 K, the crystal structure changes refer mainly to the FeII environment. There are two crystallographically independent FeII ions at this temperature, Fe(1) and Fe(2), which adopt the HS and low-spin (LS) states, respectively. The average Fe-N bond length for Fe(1) [2.174(5) A] and Fe(2) [1.955(5) A] agrees well with the reported magnetic data at this temperature. The spin transition of the FeII ions labeled as Fe(1) is found to be centered at Tc downward arrow=149 K and Tc upward arrow=167 K and accompanied by a drastic change of color from orange (HS) to red (LS). Magnetic susceptibility measurements under applied hydrostatic pressure performed on 1 have shown a linear displacement of the transition to higher temperatures while the hysteresis width remains unaltered in the interval of pressures of 105 Pa to 0.34 GPa. A further increase of the pressure induces the spin transition in the Fe(2) ions, which is completely accomplished at 1.12 GPa (T1/2=162 K). Compounds 1 and 2 are isostructural, but 2 does not exhibit spin-transition properties; the FeII centers remain in the HS state in the temperature range investigated, 5-300 K. Compounds 3-5 are not similar or isostructural with 1. A two-dimensional structure for 3-5 has been proposed on the basis of analytical data and the XRPD patterns. Compounds 3-5 undergo first-order spin transition where the critical temperatures for the cooling (Tc downward arrow) and warming (Tc upward arrow) modes are 170 and 180 K (3), 204 and 214 K (4), and 197 and 223 K (5), respectively. It is worth mentioning the color change from yellow to orange observed in 3-5 upon spin transition. The thermodynamic parameters associated with the spin transition estimated from DSC measurements are DeltaH=6 kJ mol(-1) (1), 11 kJ mol(-1) (3), 16 kJ mol(-1) (4), and 16 kJ mol(-1) (5) and DeltaS=38 J K(-1) mol(-1) (1), 62 J K(-1) mol(-1) (3), 76 J K-1 mol(-1) (4), and 81 J K(-1) mol(-1) (5).  相似文献   

14.
Rate constants have been measured for electron attachment to C5F5N (297-433 K) and to 2, 3, 5, 6-C5HF4N (303 K) using a flowing-afterglow Langmuir-probe apparatus (at a He gas pressure of 133 Pa). In both cases only the parent anion was formed in the attachment process. The attachment rate constants measured at room temperature are 1.8 +/- 0.5 X 10(-7) and 7 +/- 3 X 10(-10) cm(-3) s(-1), respectively. Rate constants were also measured for thermal electron detachment from the parent anions of these molecules. For C5F5N- detachment is negligible at room temperature, but increases to 2530 +/- 890 s(-1) at 433 K. For 2, 3, 5, 6-C5HF4N-, the detachment rate at 303 K was 520 +/- 180 s(-1). The attachment/detachment equilibrium yielded experimental electron affinities EA(C5F5N)=0.70 +/- 0.05 eV and EA(2, 3, 5, 6-C5HF4N)=0.40 +/- 0.08 eV. Electronic structure calculations were carried out for these molecules and related C5HxF5-xN using density-functional theory and the G3(MP2)//B3LYP compound method. The EAs are found to decrease by 0.25 eV, on average, with each F substitution by H. The calculated EAs are in good agreement with the present experimental results.  相似文献   

15.
Ab initio molecular orbital theory has been used to calculate accurate enthalpies of formation and adiabatic electron affinities or ionization potentials for N3, N3-, N5+, and N5- from total atomization energies. The calculated heats of formation of the gas-phase molecules/ions at 0 K are DeltaHf(N3(2Pi)) = 109.2, DeltaHf(N3-(1sigma+)) = 47.4, DeltaHf(N5-(1A1')) = 62.3, and DeltaHf(N5+(1A1)) = 353.3 kcal/mol with an estimated error bar of +/-1 kcal/mol. For comparison purposes, the error in the calculated bond energy for N2 is 0.72 kcal/mol. Born-Haber cycle calculations, using estimated lattice energies and the adiabatic ionization potentials of the anions and electron affinities of the cations, enable reliable stability predictions for the hypothetical N5(+)N3(-) and N5(+)N5(-) salts. The calculations show that neither salt can be stabilized and that both should decompose spontaneously into N3 radicals and N2. This conclusion was experimentally confirmed for the N5(+)N3(-) salt by low-temperature metathetical reactions between N5SbF6 and alkali metal azides in different solvents, resulting in violent reactions with spontaneous nitrogen evolution. It is emphasized that one needs to use adiabatic ionization potentials and electron affinities instead of vertical potentials and affinities for salt stability predictions when the formed radicals are not vibrationally stable. This is the case for the N5 radicals where the energy difference between vertical and adiabatic potentials amounts to about 100 kcal/mol per N5.  相似文献   

16.
The electronic structure and lattice dynamical properties of solid methane under high pressure have been studied based on density functional theory. We identify a cubic structure with space group of I43m below 14 GPa, the Pmn2(1) structure in the range of 14-21 GPa, and the P2(1)/c structure from 21 to 65 GPa. Our obtained Raman spectra of the P2(1)/c structure agree well with the typical Raman active modes in the available experimental data. At 65 GPa, methane undergoes a phase transition from P2(1)/c to Pnma. The structures with P2(1)/c and Pnma symmetries are insulating, and under any pressure studied methane always remains in molecular form. For Pnma phase, the orientational ordering of CH(4) molecules varies significantly at 79, 88, and 92 GPa, and by further increasing pressure the rotation of the molecules freezes and orientational ordering remains unchanged.  相似文献   

17.
Current-density maps were calculated by the ipsocentric CTOCD-DZ/6-311G** (CTOCD-DZ=continuous transformation of origin of current density-diamagnetic zero) approach for three sets of inorganic monocycles: S(4) (2+), Se(4) (2+), S(2)N(2), P(5) (-) and As(5) (-) with 6 pi electrons; S(3)N(3) (-), S(4)N(3) (+) and S(4)N(4) (2+) with 10 pi electrons; and S(5)N(5) (+) with 14 pi electrons. Ipsocentric orbital analysis was used to partition the currents into contributions from small groups of active electrons and to interpret the contributions in terms of symmetry- and energy-based selection rules. All nine systems were found to support diatropic pi currents, reinforced by sigma circulations in P(5) (-), As(5) (-), S(3)N(3) (-), S(4)N(3) (+), S(4)N(4) (2+) and S(5)N(5) (+), but opposed by them in S(4) (2+), Se(4) (2+) and S(2)N(2). The opposition of pi and sigma effects in the four-membered rings is compatible with height profiles of calculated NICS (nucleus-independent chemical shifts).  相似文献   

18.
本文通过单晶X-射线衍射法测定了EtEDTB1.4C2H5OH5H2O 1和H4EtEDTB(ClO4)4 C2H5OH 2的晶体结构。晶体学数据如下:1的分子式为C44.8H66.4N10O6.4, Mr = 847.48, 属三斜晶系, 空间群P, a = 11.489 (2), b = 11.866(3), c = 12.002(3) , = 97.47(2), ?= 114.564(13), ?= 114.11(2)? V = 1266.6(5) 3, Z = 1, Dc = 1.111 g/cm3, F(000) = 456, m(MoK? = 0.076 mm-1。共收集衍射数据5207条, 其中独立衍射数据4323条(Rint = 0.0257), 1318条可观测衍射数据(I > 2(I))用于结构计算。结构由直接法解出, 并用全矩阵最小二乘法修正, 最终偏离因子R = 0.0706, wR = 0.1802。分子具有对称中心, 4个苯并咪唑基团围绕中心呈螺旋桨状均匀排布。在1的晶体中, EtEDTB分子通过水和乙醇的氢键相连形成二维网状结构。2的分子式为C44H58Cl4N10O17, Mr = 1140.80, 属单斜晶系, 空间群C2/c, a = 24.260(5), b = 13.040(3), c = 17.680(4) , ?= 97.50(3)? V = 5545.2(2) 3, Z = 4, Dc = 1.366 g/cm3, F(000) = 2384, m(MoK? = 0.289 mm-1。共收集衍射数据12055条, 其中独立衍射数据6360条(Rint = 0.0408), 2875条可观测衍射数据(I > 2(I))用于结构计算。结构由直接法解出, 并用全矩阵最小二乘法修正, 最终偏离因子R = 0.0692  相似文献   

19.
SrP2N4 was obtained by high-pressure high-temperature synthesis utilizing the multianvil technique (5 GPa, 1400 degrees C) starting from mixtures of phosphorus(V) nitride and strontium azide. SrP2N4 turned out to be isotypic with BaGa(2)O(4) and is closely related to KGeAlO(4). The crystal structure (SrP2N4, a=17.1029(8), c=8.10318(5) A, space group P6(3) (no. 173), V=2052.70(2) A3, Z=24, R(F2)=0.0633) was solved from synchrotron powder diffraction data by applying a combination of direct methods, Patterson syntheses, and difference Fourier maps adding the unit cell information derived from electron diffraction and symmetry information obtained from 31P solid-state NMR spectroscopy. The structure of SrP2N4 was refined by the Rietveld method by utilizing both neutron and synchrotron X-ray powder diffraction data, and has been corroborated additionally by 31P solid-state NMR spectroscopy by employing through-bond connectivities and distance relations.  相似文献   

20.
In a theoretical study, benzene is compressed up to 300 GPa. The transformations found between molecular phases generally match the experimental findings in the moderate pressure regime (<20 GPa): phase I (Pbca) is found to be stable up to 4 GPa, while phase II (P4(3)2(1)2) is preferred in a narrow pressure range of 4-7 GPa. Phase III (P2(1)/c) is at lowest enthalpy at higher pressures. Above 50 GPa, phase V (P2(1) at 0 GPa; P2(1)/c at high pressure) comes into play, slightly more stable than phase III in the range of 50-80 GP, but unstable to rearrangement to a saturated, four-coordinate (at C), one-dimensional polymer. Actually, throughout the entire pressure range, crystals of graphane possess lower enthalpy than molecular benzene structures; a simple thermochemical argument is given for why this is so. In several of the benzene phases there nevertheless are substantial barriers to rearranging the molecules to a saturated polymer, especially at low temperatures. Even at room temperature these barriers should allow one to study the effect of pressure on the metastable molecular phases. Molecular phase III (P2(1)/c) is one such; it remains metastable to higher pressures up to ~200 GPa, at which point it too rearranges spontaneously to a saturated, tetracoordinate CH polymer. At 300 K the isomerization transition occurs at a lower pressure. Nevertheless, there may be a narrow region of pressure, between P = 180 and 200 GPa, where one could find a metallic, molecular benzene state. We explore several lower dimensional models for such a metallic benzene. We also probe the possible first steps in a localized, nucleated benzene polymerization by studying the dimerization of benzene molecules. Several new (C(6)H(6))(2) dimers are predicted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号