首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
混合层强化混合的数值研究   总被引:2,自引:0,他引:2  
罗纪生  肖左利 《力学学报》2002,34(2):168-176
受 Wang & Fiedler(1997)的实验的启发,采用高阶精度的差分格式,通过数值模拟的方法,研究了二维混合层及限于两平板间的二维混合层(二维受限混合层)入口处加振动对提高混合层混合效率的作用.计算结果表明:对二维混合层,振动的频率越低,在混合层中产生的大尺度涡结构的尺度越大,在频率很低时,涡具有相似性;对限于两平板间的二维混合层,在一定的振动频率下,混合层中产生的涡较大而且破碎得也较好,这将有利于混合.这一结论与 Wang & Fiedler(1997)的实验观测到的结果是一致的.  相似文献   

2.
The problem of turbulent Couette flow driven by a statistically steady external wind is studied in the framework of spatially filtered Navier–Stokes equations. The phenomenon of wind-driven flow of water is represented by a layer of air modeled as Poiseuille flow (air sub-domain), coupled to a layer of water modeled as Couette flow (water sub-domain). We focus on changes in the statistics in either the air or the water sub-domain, due to the coupling with the other sub-domain. We also highlight dynamic flow structures forming near the air-water interface. Simulations based on different Reynolds numbers in the air and the water sub-domains are compared to computationally less demanding simulations with equal Reynolds numbers. Results of these simulations indicate strong similarities, i.e., the flow is well approximated by simulating air and water at the same Reynolds numbers. Further analysis shows that the flow in the water domain shares important features with classical Couette flows. The horizontal turbulent mixing renders a thinner boundary layer in the water sub-domain. Moreover, an increased intermittency in the flow velocities is observed, which may be linked to so-called splat events near the air-water interface. These splats characterize the interaction of coherent structures across the interface, being stronger in the water phase. An analysis of the pressure-strain correlation near the air-water interface on the water side shows that such splats are responsible for redistributing energy from the streamwise and spanwise directions, to the vertical direction. This behavior, although qualitatively similar to wall-bounded flows, differ mainly on the fact that most of the energy drained comes from the streamwise direction: in wall-bounded the main contributor is the spanwise direction. The boundary layers near the air-water interface show inclined vortical structures. Unlike in coupled Couette–Couette flow, the peak in the Reynolds stress is displaced from the channel’s center into the buffer region of the water sub-domain.  相似文献   

3.
A research was conducted on a new mixing device referred as a “vent slot mixer”, using experimental and computational methods. The experiment was conducted in a laboratory-scale supersonic wind-tunnel of Mach number 2. Inflow air was under atmospheric air condition, and hydrogen gas was used as fuel. In addition, the computational simulation approach was performed to support the experimental result. The vent slot mixer can directly entrain the main airflow into the recirculation region, inducing complex flow structures in the recirculation region. This also leads to gradual development of the shear layer to reduce the total pressure loss mainly induced by a recompression shock. Contrary to typical shear layers of step mixer, for the vent slot mixer, two-dimensional large-scale structures and weak shocks were clearly identified around the shear layer through experimental and computational methods. When the fuel was injected from one circular injector in the recirculation region, the high fuel concentration of the vent slot mixer was evenly distributed along the spanwise direction, but with the step mixer the fuel was highly concentrated along the region downstream of the injector. Therefore, the vent slot mixer is effective to uniformly spread the fuel toward the spanwise direction in the recirculation region. As the fuel injection rate increased, the shear layer downstream of the vent slot mixer grew uniformly along the spanwise direction; consequently, shock structures such as a recompression shock and weak shocks on the shear layer were significantly mitigated at J = 3.2.  相似文献   

4.
The topology of large scale structures in a turbulent boundary layer is investigated numerically. Spatial characteristics of the large scale structure are presented through an original method, proper orthogonal decomposition (POD) of the three-dimensional vorticity fields. The DNS results, obtained by Tiselj et al. [23] for a fully developed turbulent flow in a flume, are used in the present work to analyze coherent structures with the proposed methodology. In contrast to the reconstruction methods that use instantaneous flow quantities, this approach utilizes the whole dataset of the numerical simulation. The analysis uses one thousand 3D vorticity fields from 50000 time steps of the simulation for the Reynolds number of 2600 (the turbulent Reynolds number Re*=171). The computational domain is 2146×171×537 wall units and the grid resolution is 128×65×72 points (in streamwise, wall-normal and spanwise directions, respectively). Experimental results obtained by using particle image velocimetry (PIV) in a fully developed turbulent boundary layer in a flume, which were analyzed with the same statistical characterization method, are in agreement with the DNS analysis: the dominant vortical structure appears to have a longitudinal streamwise orientation, an inclination angle of about 8°, streamwise length of several hundred wall units, and a distance between the neighboring structures of about 100 wall units in the spanwise direction. PACS 47.27.Nz, 47.54+r  相似文献   

5.
This study examines the pronounced periodicity of large-scale coherent structures in turbulent boundary layers, which are of the order of the boundary layer thickness (δ) and reside in the logarithmic and wake regions. To this end, a series of multi-camera planar particle image velocimetry (PIV) measurements are conducted in a streamwise/spanwise and streamwise/wall-normal planes at a friction Reynolds number of Reτ ≈ 2500. The experiments are configured to capture a large field-of-view with velocity fields that cover a streamwise extent in excess of 15δ. The resulting vector fields reveal large-scale streamwise and spanwise organisation instantaneously, which is often lost when only examining mean statistics. By extracting the dominant streamwise and spanwise Fourier modes of the large-scale motions, a clearer picture of these structural organisations and coherence is presented. A targeted inspection of these dominant modes reveal that these features remain coherent over a significant fraction of the boundary layer thickness in the wall-normal direction, but only a fraction of them have coherence that extends to the wall (wall-coherent). Further, the spatial extents and the population density of these wall-coherent and wall-incoherent modes are characterised, with the former conforming to the attached eddy arguments of Townsend (1976) and the subsequent attached eddy models. Collectively, through the evidence gathered here, we provide a conceptual picture of the representative large-scale structures in turbulent boundary layers, which are likely to have implications on the type of representative structures to be used in structure-based models for these flows.  相似文献   

6.
超音速混合层稳定性分析及增强混合的研究   总被引:1,自引:2,他引:1  
罗纪生  吕祥翠 《力学学报》2004,36(2):202-207
利用流动稳定性提高超音速混合层的混合效率,对于提高超音速流的高效混合是一个有效途径。研究结果表明,有展向曲率的三维混合层中,三维扰动的增长率很大,且法向的掺混能力也较强,可以有效地增强混合。对于高马赫数来流的超音速混合层,这一特性依然存在,这将有利于提高高超音速混合层的混合能力。  相似文献   

7.
A series of spatially developing mixing layers are simulated using the large eddy simulation (LES) technique. A hyperbolic tangent function and data derived from boundary layer simulations are used to generate the inflow condition, and their effects on the flow are compared. The simulations are performed in both two and three dimensions. In two‐dimensional simulations, both types of inflow conditions produce a layer that grows through successive pairings of Kelvin–Helmholtz (K–H) vortices, but the composition ratio is lower for the hyperbolic tangent inflow simulations. The two‐dimensional simulations do not undergo a transition to turbulence. The three‐dimensional simulations produce a transition to turbulence, and coherent structures are found in the post‐transition region of the flow. The composition ratio of the three‐dimensional layers is reduced in comparison to the counterpart two‐dimensional runs. The mechanisms of growth are investigated in each type of simulation, and amalgamative pairing interactions are found in the pre‐transition region of the three‐dimensional simulations, and throughout the entire computational domain of those carried out in two‐dimensions. The structures beyond the post‐transition region of the three‐dimensional simulations appear to behave in a much different manner to their pre‐transition cousins, with no pairing‐type interactions observed in the turbulent flow. In order to accurately simulate spatially developing mixing layers, it is postulated that the inflow conditions must closely correspond to the conditions present in the reference experiment. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
张洪泉 《力学学报》1993,25(3):356-361
对平面混合层绕流圆柱时的旋涡脱落和流动结构进行了数值研究。方法是用一空间、时间三阶精度的有限差分格式解二维不可压Navier-Stokes方程和连续性方程。计算时雷诺数Re取为1000,混合层速度比Ra从0到1,混合层动量厚度θ由0.2到2。  相似文献   

9.
超声速混合层中扰动增强混合实验   总被引:1,自引:0,他引:1  
以基于纳米技术的平面激光散射(nano-based planar laser scattering, NPLS)流动显示技术定性研究了隔板扰动对超声速混合层($Mc=0.5$)的混合增强效果. 首先通过系列实验优化设计了扰动参数. 实验结果表明,超声速混合层对于从隔板引入的扰动非常敏感. 二维扰动的混合强化机制是提前混合层失稳位置,增厚混合层;而三维扰动的混合强化机制主要是通过诱导流向涡和展向运动,促进流动三维性质的发展. 总体而言,三维扰动的混合强化效果优于二维扰动. 由于是超声速混合层,隔板上的扰动片虽然很薄,但同样会引起激波的产生,是该方法中总压损失的主要原因.   相似文献   

10.
二维混合层拟序结构的直接数值模拟   总被引:2,自引:0,他引:2  
本文是在文[1]的基础上,引用Cain等人(1981)提出的映射函数将无穷远的边界变换到有限距离处,用伪谱方法对N-S方程组进行直接数值模拟,研究时间发展的二维混合层的不稳定性,再现了大涡的卷起,涡对的合并与撕裂以及三个涡、四个涡之间的相互作用过程,并将过程进行了动态显示。  相似文献   

11.
The reacting two-dimensional plane mixing layer has been studied in two configurations: a rearward facing step and a two-stream mixing layer. Observations have been made of the steady state behavior, and the unsteady behavior when the flow was forced by a specific acoustic frequency. The steady behavior of the mean properties of the reacting flows is similar to that of non-reacting free shear flows except for the global effects of thermodynamic property changes. The structure of these flows is qualitatively similar to that of non-reacting flows. Vortices form by the two-dimensional Kelvin-Helmholtz instability and grow by subharmonic combination until the mixing layer interacts with the walls. Entrainment is dominated by the two-dimensional vortex motion. Three-dimensional instabilities give rise to secondary vortices which are coherent over several Kelvin-Helmholtz structures and dominate the fine scale mixing process. The mixing transition corresponds to a loss of coherence in the layer. Unsteady behavior occurs when there are resonant interactions with the Kelvin-Helmholtz instability or the instability associated with the recirculation vortex in the rearward facing step flow. Modeling efforts are reported which show promise of simulating the essential features of plane mixing layers.A version of this paper was presented at the ASME Winter Annual Meeting of 1984 and printed in AMD-Vol. 66  相似文献   

12.
Direct numerical simulations of a turbulent Couette-Poiseuille flow with zero-mean-shear at the moving wall (SL-flow) is performed to examine flow features compared to those for a turbulent pure Poiseuille flow (P-flow). Profiles of the streamwise mean velocity, indicator function and ratio of production to dissipation show that the logarithmic region is significantly elongated for the SL-flow compared to that for the P-flow at a similar Reynolds number. In addition, the magnitudes of the Reynolds stresses are found to be larger in both inner and outer layers for the SL-flow than those for the P-flow. The spanwise spectra of the production term in the turbulent kinetic energy equation are examined to provide a structural basis for explaining the statistical behaviors. In addition, because the growth of the energy-containing motions extends to the outer layer further for the SL-flow due to the presence of a positive mean shear throughout the entire wall layer, the self-similar behavior of the energy balance between the production and transport terms with respect to the self-similar wavenumber is found far from the wall. We also find the increase in the number of uniform momentum zones in the SL-flow, revealing the hierarchical distribution of the energy-containing eddies which are composed of multiple uniform momentum zones. These coherent motions lead to the elongation of the logarithmic region for the SL-flow. Finally, investigation of the turbulent energy transfer process in a spectral domain for the SL-flow demonstrates importance of outer layer very-long structures, and these structures attribute to the energy transport process in an entire flow field.  相似文献   

13.
The action of an artificially generated spanwise flow in the form of periodical longitudinal vortices on a plane turbulent mixing layer is investigated. It is shown that the disturbances result in a significant increase in the thickness of the mixing region. For two kinds of spanwise flow, namely, vortices whose centers lie in the plane separating the streams and vortices located above this plane, the dependence of the mixing layer thickness on the vortex amplitude and vertical dimension and on the longitudinal coordinate is found.  相似文献   

14.
In this paper,the formation of the coherent structures in the wall region of aturbulent boundary layer was studied,using the nonlinear theory of the hydrodynamicstability.The spanwise and streamwise wavelengths of the most amplified unstablewave obtained by this study were found in good agreement with the experiments,whichmakes the distinct feature of this study in the present paper,as the basis of thestability analysis,a more rational velocity profile has been used,which is different fromthat of the turbulent mean flow.And also,the new nonlinear theory was used.Theresult is useful in understanding of the quasi-periodicity of the coherent structure in theturbulent boundary layer.  相似文献   

15.
Although there have been several numerical studies on particle dispersion in mixing layers, most of them have been conducted for temporally evolving mixing layers. In this study, numerical simulations of a spatially developing mixing layer are performed to investigate particle dispersion under various conditions. The full compressible Navier--Stokes equations are solved with a high-order compact finite difference scheme, along with high-order time-integration. Accurate non-reflecting boundary conditions for the fluid flow are used, and several methods for introducing particles into the computational domain are tested. The particles are traced using a Lagrangian approach assuming one-way coupling between the continuous and the dispersed phases. The study focuses on the roles of the large-scale vortex structures in particle dispersion at low, medium and high Stokes numbers, which highlights the important effects of interacting vortex structures in nearby regions in the spatially developing mixing layer. The effects of particles with randomly distributed sizes (or Stokes numbers) are also investigated. Both instantaneous flow fields and statistical quantities are analyzed, which reveals essential features of particle dispersion in spatially developing free shear flows, which are different from those observed in temporally developing flows. The inclusion of the gravity not only modifies the overall dispersion patterns, but also enhances stream-crossing by particles. Received 7 June 2001 and accepted 19 February 2002  相似文献   

16.
This experimental study reports flow developments inside a parallelepipedic cavity of variable shape and dimensions. That flow is generated by the interaction between a laminar boundary layer and the cavity, which creates shear-layer oscillations. The aim is to understand the three-dimensional flow morphology varying the Reynolds number and the cavity shape. Flow visualizations are obtained in a plane situated inside the cavity in order to get the dynamical structures. Dimensional analysis of the cavity flow teaches that three dimensionless numbers are necessary for the flow reduction. This is confirmed by experimental results pointing thresholds of appearance of instabilities identified for some combinations of Reynolds number and geometric parameters. The key mechanisms for their existence are centrifugal effects induced by a vortex of spanwise axis with sufficient intensity, and viscous effects due to the wall confinement of the cavity. Their destruction is linked to flow transition to turbulence above a limiting convective velocity generated by the vortex of spanwise axis. These instabilities are generally present in a spanwise row of counter-rotating pairs of vortices, but for some cases, isolated pairs are also identified. Secondary modulations of primary instabilities are also present for particular parameters. Results permit to discriminate the relevant scales associated with the shear layer and the inner cavity flow.  相似文献   

17.
A procedure is suggested here for reconstructing the time variation of a three-dimensional (3D) coherent velocity field, based on applying Least Square Method to a very limited number of phase-locked measurements. The measurements are performed in a spanwise plane of a forced turbulent mixing layer by employing the stereo particle image velocimetry system. The forcing is produced by oscillating two- and three-dimensional (3D) flappers placed at the edge of the splitter plate. The feasibility and validity of the procedure for velocity field reconstruction are checked by using Hot Wire Measurements. Very clear patterns are observed of two types of coherent structures: spanwise K-H billows (rolls) and streamwise vortices. These are due to primary and secondary instabilities and their time evolution is presented.  相似文献   

18.
湍流边界层外区相干结构的三维波模型   总被引:2,自引:0,他引:2  
陆利蓬  罗纪生 《力学学报》2000,32(6):744-749
根据流动稳定性理论,提出了一种三维波模型来描述湍流边界层外区大尺度相干结构。计算所得流线图和等涡量线图较罗纪生,周恒(1993)的二维波模型更符合实验结果。说明该三维模型能够较好地反映湍流边界层外区大尺度相干结构的物理特征。  相似文献   

19.
Conclusions An experimental study which shows the effects of relatively small changes in the initial conditions on the development of the three-dimensional structure of a plane mixing layer originating from laminar boundary layers has been completed. It was shown that while the exact shapes and positions of the streamwise vortex structures are not the same for the two initial conditions, their overall distribution, reorganization and decay are very similar. The present results imply that while some of the specific details of the streamwise vortex structure may be facility dependent, a relatively strong structure, which produces significant three-dimensionality, should form in all mixing layers originating from laminar boundary layers. After some initial readjustments, the structure will appear in the form of counter-rotating pairs of streamwise vortices which, in the mean, grow with the mixing layer and decay in strength.The present results also serve as a warning that small changes in initial conditions may significantly affect the Reynolds stress distributions in the near-field. The most likely mechanism for this is through the effects of very small changes in initial boundary layer properties on the details (strength and location) of the spanwise vortex roll-up. Despite these relatively large differences in the near-field, both mixing layers attain comparable turbulence structure and growth rates in the far-field. In addition, the behavior of the streamwise vortex structure does not appear to be affected by the differences in the near-field Reynolds stress distributions.  相似文献   

20.
We investigate the turbulent flow through a heterogeneous forest canopy by high-resolution numerical modeling. For this purpose, a novel approach to model individual trees is implemented in our large-eddy simulation (LES). A group of sixteen fractal Pythagoras trees is placed in the computational domain and the tree elements are numerically treated as immersed boundaries. Our objective is to resolve the multiscale flow response starting at the diameter of individual tree elements up to the depth of the atmospheric surface layer. A reference run, conducted for the forest flow under neutral thermal stratification, produces physically meaningful turbulence statistics. Our numerical results agree quantitatively with data obtained from former field-scale LESs and wind tunnel experiments. Furthermore, the numerical simulations resolve vortex shedding behind individual branches and trunks as well as the integral response of the turbulent flow through the heterogeneous forest canopy. A focus is the investigation of the turbulence structure of the flow under stable thermal stratification and in response to the heating of the fractal tree crowns. For the stratified flows, statistical quantities, e.g. turbulent kinetic energy and vorticity, are presented and the turbulent exchange processes of momentum and heat are considered in detail. The onset and formation of coherent structures such as elevated shear layers above the diabatically heated forest canopy are analyzed. For the stably stratified flow, temperature ramps above the forest canopy were simulated in agreement with previous observations. Thermally driven vortices with a typical diameter of the canopy height were simulated when the tree crowns were diabatically heated. The impact of the coherent flow structures on the heat flux is investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号