首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Photodynamic therapy (PDT) relies on three main ingredients, oxygen, light and photoactivating compounds, although the PDT response is definitively contingent on the site and level of reactive oxygen species (ROS) generation. This study describes the development of a novel, fluorescent-based actinometer microsphere system as a means of discerning spatially resolved dosimetry of total fluence and ROS production. Providing a high resolution, localized, in situ measurement of fluence and ROS generation is critical for developing in vivo PDT protocols. Alginate-poly-L-lysine-alginate microspheres were produced using ionotropic gelation of sodium alginate droplets, ranging from 80 to 200 microm in diameter, incorporating two dyes, ADS680WS (ADS) and Rhodophyta-phycoerythrin (RPE), attached to the spheres' inside and outside layers, respectively. To test the responsivity and dynamic range of RPE for ROS detection, the production of ROS was initiated either chemically using increasing concentrations of potassium perchromate or photochemically using aluminum tetrasulphonated phthalocyanine. The generation of singlet oxygen was confirmed by phosphorescence at 1270 nm. The resulting photodegradation and decrease in fluorescence of RPE was found to correlate with increased perchromate or PDT treatment fluence, respectively. This effect was independent of pH (6.5-8) and could be inhibited using sodium azide. RPE was not susceptible to photobleaching with light alone (670 nm; 150 Jcm(-2)). ADS, which absorbs light between 600 and 750 nm, showed a direct correlation between radiant exposure (670 nm; 0-100 Jcm(-2)) and diminished fluorescence. Photobleaching was independent of irradiance (10-40 mW cm(-2)). We propose that actinometer microspheres may provide a means for obtaining high spatial resolution information regarding delivered PDT dose within model systems during investigational PDT development and dosimetric information for clinical extracorporeal PDT as in the case of ex vivo bone marrow purging.  相似文献   

2.
Photodynamic therapy of solid organs requires sufficient PDT dose throughout the target tissue while minimizing the dose to proximal normal structures. This requires treatment planning for position and power of the multiple delivery channels, complemented by on-line monitoring during treatment of light delivery, drug concentration and oxygen levels. We describe our experience in implementing this approach in Phase I/II clinical trials of the Pd-bacteriophephorbide photosensitizer TOOKAD (WST09)-mediated PDT of recurrent prostate cancer following radiation failure. We present several techniques for delivery and monitoring of photodynamic therapy, including beam splitters for light delivery to multiple delivery fibers, multi-channel light dosimetry devices for monitoring the fluence rate in the prostate and surrounding organs, methods of measuring the tissue optical properties in situ, and optical spectroscopy for monitoring drug pharmacokinetics of TOOKAD in whole blood samples and in situ in the prostate. Since TOOKAD is a vascular-targeted agent, the design and implementation of the techniques are different than for cellular-targeted agents. Further development of these delivery and monitoring techniques will permit full on-line monitoring of the treatment that will enable real-time, patient-specific and optimized delivery of PDT.  相似文献   

3.
The purpose of this review is to present an overview of the development of photodiagnostic and photodynamic therapy (PDD and PDT) techniques in Poland. The paper discusses the principles of PDD, including fluorescent techniques in determining precancerous conditions and cancers of the skin, digestive tract, bladder and respiratory tract. Methods of PDT of cancer will be discussed and the current state of knowledge as well as future trends in the development of photodynamic techniques will be presented, including the possibility of using photodynamic antimicrobial therapy. Research pioneers in photodynamic medicine such as Thomas Dougherty are an inspiration for the development of methods of PDD and PDT in our Clinic. The Center for Laser Diagnostics and Therapy in Bytom, Poland, promotes the propagation of PDD and PDT through the training of clinicians and raising awareness among students in training and the general public. Physicians at the Center are engaged in photomedical research aimed at clinical implementation and exploration of new avenues in photomedicine while optimizing existing modalities. The Center promotes dissemination of clinical results from a wide range of topics in PDD and PDT and serving as representative authorities of photodynamic medicine in Poland and Europe.  相似文献   

4.
Optically stimulated luminescence signals from natural quartz and feldspar are now used routinely in dating geological and archaeological materials. More recently they have also been employed in accident dosimetry, i.e. the retrospective assessment of doses received as a result of a nuclear accident. Since 1990 the exploration of this wide variety of applications has driven an intensive investigation and development programme at Risø, in measurement facilities and techniques. This paper reviews some of the outcomes of this programme, including (i) optimisation of stimulation and emission windows, and detection sensitivity, (ii) experience with various stimulation light sources, including filtered incandescent lamps (420–550 nm) and high intensity light emitting diodes (470 nm) and laser diodes (830–850 nm). We also discuss recently developed high-precision single-aliquot measurement protocols. These offer exciting possibilities in dating and accident dosimetry, and are already leading to new demands on measurement techniques and facilities.  相似文献   

5.
Singlet oxygen (1O2) is believed to be the major cytotoxic agent involved in photodynamic therapy (PDT). Measurement of 1O2 near-infrared (NIR) luminescence at 1270 nm in biological environments is confounded by the strongly reduced 1O2 lifetime and probably has never been achieved. We present evidence that this is now possible, using a new NIR-sensitive photomultiplier tube. Time-resolved 1O2 luminescence measurements were made in various solutions of aluminum tetrasulphonated phthalocyanine (AlS4Pc) and Photofrin. Measurements were also performed on suspensions of leukemia cells incubated with AlS4Pc, and a true intracellular component of the 1O2 signal was clearly identified. Time-resolved analysis showed a strongly reduced 1O2 lifetime and an increased photosensitizer triplet-state lifetime in the intracellular component. In vivo measurements were performed on normal skin and liver of Wistar rats sensitized with 50 mg/kg AlS4Pc. In each case, a small but statistically significant spectral peak was observed at 1270 nm. The 1O2 lifetime based on photon count rate measurements at 1270 nm was 0.03-0.18 micros, consistent with published upper limits. We believe that these are the first direct observations of PDT-generated intracellular and in vivo 102. The detector technology provides a new tool for PDT research and possibly clinical use.  相似文献   

6.
To date, singlet oxygen ((1)O(2)) luminescence (SOL) detection was predictive of photodynamic therapy (PDT) treatment responses both in vitro and in vivo, but accurate quantification is challenging. In particular, the early and strongest part of the time-resolved signal (500-2000ns) is difficult to separate from confounding sources of luminescence and system noise, and so is normally gated out. However, the signal dynamics change with oxygen depletion during PDT, so that this time gating biases the (1)O(2) measurements. Here, the impact of gating was investigated in detail, determining the rate constants from SOL and direct pO(2) measurements during meso-tetra(hydroxyphenyl)chlorin (mTHPC)-mediated PDT of cells in vitro under well-controlled conditions. With these data as input, numerical simulations were used to examine PDT and SOL dynamics, and the influence of various time gates on cumulative SOL signals. It is shown that gating can underestimate the SOL at early treatment time points by ~40% and underestimate the cumulative SOL signal by 20-25%, representing significant errors. In vitro studies with both mTHPC and aminolevulinic acid-photosensitizer protoporphyrin IX demonstrate that rigorous analysis of SOL signal kinetics is then crucial in order to use SOL as an accurate and quantitative PDT dose metric.  相似文献   

7.
Explicit dosimetry of treatment light fluence and implicit dosimetry of photosensitizer photobleaching are commonly used methods to guide dose delivery during clinical PDT. Tissue oxygen, however, is not routinely monitored intraoperatively even though it is one of the three major components of treatment. Quantitative information about in vivo tissue oxygenation during PDT is desirable, because it enables reactive oxygen species explicit dosimetry (ROSED) for prediction of treatment outcome based on PDT-induced changes in tumor oxygen level. Here, we demonstrate ROSED in a clinical setting, Photofrin-mediated pleural photodynamic therapy, by utilizing tumor blood flow information measured by diffuse correlation spectroscopy (DCS). A DCS contact probe was sutured to the pleural cavity wall after surgical resection of pleural mesothelioma tumor to monitor tissue blood flow (blood flow index) during intraoperative PDT treatment. Isotropic detectors were used to measure treatment light fluence and photosensitizer concentration. Blood-flow-derived tumor oxygen concentration, estimated by applying a preclinically determined conversion factor of 1.5 × 109 μMs cm−2 to the blood flow index, was used in the ROSED model to calculate the total reacted reactive oxygen species [ROS]rx. Seven patients and 12 different pleural sites were assessed and large inter- and intrapatient heterogeneities in [ROS]rx were observed although an identical light dose of 60 J cm−2 was prescribed to all patients.  相似文献   

8.
In current clinical practice, photodynamic therapy (PDT) is carried out with prescribed drug doses and light doses as well as fixed drug-light intervals and illumination fluence rates. This approach can result in undesirable treatment outcomes of either overtreatment or undertreatment because of biological variations between different lesions and patients. In this study, we explore the possibility of improving PDT dosimetry by monitoring drug photobleaching and photoproduct formation. The study involved 60 mice receiving the same drug dose of a novel verteporfin-like photosensitizer, QLT0074, at 0.3 mg/kg body weight, followed by different light doses of 5, 10, 20, 30, 40 or 50 J/cm2 at 686 nm and a fluence rate of 70 mW/cm2. Photobleaching and photoproduct formation were measured simultaneously, using fluorescence spectroscopy. A ratio technique for data processing was introduced to reliably detect the photoproduct formed by PDT on mouse skin in vivo. The study showed that the QLT0074 photoproduct is stable and can be reliably quantified. Three new parameters, photoproduct score (PPS), photobleaching score (PBS) and percentage photobleaching score (PBS%), were introduced and tested together with the conventional dosimetry parameter, light dose, for performance on predicting PDT-induced outcome, skin necrosis. The statistical analysis of experimental results was performed with an ordinal logistic regression model. We demonstrated that both PPS and PBS improved the prediction of skin necrosis dramatically compared to light dose. PPS was identified as the best single parameter for predicting the PDT outcome.  相似文献   

9.
Singlet oxygen generation ability of squarylium cyanine dyes   总被引:1,自引:0,他引:1  
The quantum yields for singlet oxygen generation of several squarylium cyanine dyes derived from benzothiazole, benzoselenazole and quinoline, displaying absorption within the so-called “phototherapeutic window” (600–1000 nm), were determined, envisioning their potential usefulness for photodynamic therapy (PDT). The determination was performed by a direct method measuring the luminescence decay of the dyes in the near infrared. Considering the absorption and the quantum yields displayed by some of the dyes, these seemed to be potential candidates as sensitizers for PDT.  相似文献   

10.
It is desirable to quantify the distribution of the light fluence rate, the optical properties, the drug concentration, and the tissue oxygenation for photodynamic therapy (PDT) of prostate cancer. We have developed an integrated system to determine these quantities before and after PDT treatment using motorized probes. The optical properties (absorption (micro(a)), transport scattering (micro(s'), and effective attenuation (micro(eff)) coefficients) of cancerous human prostate were measured in-vivo using interstitial isotropic detectors. Measurements were made at 732 nm before and after motexafin lutetium (MLu) mediated PDT at different locations along each catheter. The light fluence rate distribution was also measured along the catheters during PDT. Diffuse absorption spectroscopy measurement using a white light source allows extrapolation of the distribution of oxygen saturation StO2, total blood volume ([Hb]t), and MLu concentration. The distribution of drug concentration was also studied using fluorescence from a single optical fiber, and was found to be in good agreement with the values determined by absorption spectroscopy. This study shows significant inter- and intra-prostatic variations in the tissue optical properties and MLu drug distribution, suggesting that a real-time dosimetry measurement and feedback system for monitoring these values during treatment should be considered in future PDT studies.  相似文献   

11.
As part of a preclinical trial for the treatment of peritoneal carcinomatosis (PC) with photodynamic therapy (PDT), we have assessed changes in optical properties, tissue oxygenation and drug concentration as a result of benzoporphyrin derivative (BPD)-mediated PDT using diffuse reflectance and fluorescence measurements. PDT can effectively treat superficial disease spread, but treatment efficacy is influenced by physical properties of the treated tissue which can change over the treatment time. In this study, healthy canines were given BPD and irradiated with 690 nm light during a partial bowel resection, and spectroscopic and fluorescence measurements were made using an in-house built spectroscopic probe. Hemoglobin concentration, oxygenation and optical properties were determined to be highly heterogeneous between canines and at different anatomical locations within the same subject, so further development of PDT dosimetry systems will need to address this patient and location-specific dose optimization. Compared to other photosensitizers, we found no apparent BPD photobleaching after PDT.  相似文献   

12.
Singlet oxygen (1O2) is thought to be the cytotoxic agent in photodynamic therapy (PDT) with current photosensitizers. Direct monitoring of 1O2 concentration in vivo would be a valuable tool in studying biological response. Attempts were made to measure 1O2 IR luminescence during PDT of cell suspensions and two murine tumour models using the photosensitizers Photofrin II and aluminium chlorosulphonated phthalocyanine. Instrumentation was virtually identical to that devised by Parker in the one positive report of in vivo luminescence detection in the literature. Despite the fact that our treatments caused cell killing and tissue necrosis, we were unable to observe 1O2 emission under any conditions. We attribute this negative result to a reduction in 1O2 lifetime in the cellular environment. Quantitative calibration of our system allowed us to estimate that the singlet oxygen lifetime in tissue is less than 0.5 microsecond. Some technical improvements are suggested which would improve detector performance and perhaps make such measurements feasible.  相似文献   

13.
This review covers photochemical approaches aimed at supplementing surgical instruments with handheld photodynamic therapy (PDT) instruments. PDT is not widely used in hospitals, because of the laser equipment and expertise needed, and because insurance policies often do not cover the procedure. Accordingly, this review focuses on advances in photochemistry, photophysics, nanotechnology and miniaturization techniques that may likely inspire the use of handheld instruments in PDT. A takeaway point is that the advent of photochemical scalpels or lancets that deliver reactive oxygen species (ROS) on site may better equip medical practitioners and allow for eradication of tumors or infections in general. Specifically, the review is divided into several sections: sensitizer types, multiphoton and plasmonic topics, sensitizer delivery, light delivery, dosimetry, fiber optics and handheld implements in PDT.  相似文献   

14.
Thomas J Dougherty from Roswell Park Cancer Center played a major role in the progress of photodynamic therapy (PDT) from a laboratory science into a real-world clinical therapy to treat patients with cancer. Nevertheless over the succeeding 45 years, it is fair to say that the overall progress of clinical PDT for cancer has been somewhat disappointing. The goal of this perspective article is to summarize some of the clinical trials run by various companies using photosensitizers with different structures that have been conducted for different types of cancer. While some have been successful, others have failed, and several are now ongoing. I will attempt to touch on some factors, which have influenced this checkered history and look forward to the future of clinical PDT for cancer.  相似文献   

15.
Current status of modern analytical luminescence methods   总被引:2,自引:0,他引:2  
Modern analytical luminescence methods and their recent applications are reviewed with emphasis on the most sensitive methods that can be expected to be useful in future microanalytical systems such as μ-TAS, lab-on-chip, point-of-care (POC) and high throughput screening (HTS) applications. Photoluminescence (PL) is presently the most important group of analytical techniques utilising luminescence. Because of the rapidly increasing popularity of electrochemiluminescence (ECL) and its applications, we have given particular attention to ECL mechanisms and techniques. Due to the present and future importance of capillary electrophoresis (CE) as a separation method, the CE detection methods based on luminescence are also considered in a relatively detailed way. For those researchers, designing novel experiments and assays, experimental set-ups, and apparatus we include web links to the manufacturers of some fairly rare reagents, as well as modern instrument components.  相似文献   

16.
Photodynamic therapy (PDT) has been considered a noninvasive and cost-effective modality for tumor treatment. However, the complexity of tumor microenvironments poses challenges to the implementation of traditional PDT. Here, we review recent advances in PDT to resolve the current problems. Major breakthroughs in PDTs are enabling significant progress in molecular medicine and are interconnected with innovative strategies based on smart bio/nanomaterials or therapeutic insights. We focus on newly developed PDT strategies designed by tailoring photosensitive reactive oxygen species generation, which include the use of proteinaceous photosensitizers, self-illumination, or oxygen-independent approaches. While these updated PDT platforms are expected to enable major advances in cancer treatment, addressing future challenges related to biosafety and target specificity is discussed throughout as a necessary goal to expand the usefulness of PDT.Subject terms: Biological therapy, Biosensors  相似文献   

17.
With conflicting results in the literature on the ability of photodynamic therapy (PDT) to inhibit intimal hyperplasia (IH), the present study systematically investigated the effects of drug and light dosimetry on the biologic responses in the artery wall. The rat common carotid artery was balloon-injured and pressurized with benzoporphyrin-derivative monoacid ring (BPD). Then, PDT was performed with an external laser at different fluences and the biologic responses of the artery wall were histologically examined at 24 h and at 2 weeks. Photodynamic therapy effects on injured arteries can be classified into four stages: low-dose PDT using 0.5 microgram/mL BPD at 50 J/cm2 (stage I) resulted in incomplete cell eradication and significant IH at 2 weeks. Irradiation with 100 J/cm2 at the same BPD concentration (stage II) completely eradicated the cells in the artery wall at 24 h but still led to IH at 2 weeks. However, 25 micrograms/mL BPD at 100 J/cm2 (stage III) resulted in total cell eradication at 24 h and inhibition of IH at 2 weeks. In contrast, high-dose PDT with 25 micrograms/mL BPD and 200 J/cm2 (stage IV) led to thrombus development and vascular occlusion at 24 h. These data, demonstrating the different stages of PDT effects on injured arteries, emphasize the critical importance of appropriate PDT dosimetry for the effective inhibition of IH.  相似文献   

18.
Two attractive detection strategies for bioassays are reviewed in this article. Both approaches use the highly sensitive time-resolved luminescence detection of lanthanide complexes in combination with a signal amplification scheme. While enzyme-amplified lanthanide luminescence (EALL) has been an established technique for more than a decade, nanoparticles doped with luminescent lanthanide complexes have been introduced very recently. In this paper, the basic properties and major applications of both techniques are presented, and their future perspectives are discussed critically.  相似文献   

19.
Fliser D  Wittke S  Mischak H 《Electrophoresis》2005,26(14):2708-2716
The introduction of fast, sensitive, and robust techniques for proteomic analysis into clinical practice represents a major step toward a new diagnostic approach of body fluids. In addition, proteomics emerges as a key technology for the discovery of disease biomarkers in various body fluids. However, even in relatively protein-deprived body fluids such as urine, the complexity and wide dynamic range of protein expression pose a considerable challenge to both separation and identification technologies. In the present review we discuss from a clinical point-of-view recent advances of the use of proteomics in clinical diagnosis as well as therapy evaluation. We focus on capillary electrophoresis coupled to mass spectrometry (CE-MS) and discuss CE-MS from an application point of view evaluating its merits and vices with regard to biomarker discovery. This review further presents examples of clinical applications of CE-MS for detection and identification of biomarkers in urine.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号