首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have synthesized and structurally characterized three pyridylethylidene-functionalized diphosphonate-containing polyoxomolybdates, [{Mo(VI)O(3)}(2){Mo(V)(2)O(4)}{HO(3)PC(O)(CH(2)-3-C(5)NH(4))PO(3)}(2)](6-) (1), [{Mo(VI)(2)O(6)}(2){Mo(V)(2)O(4)}{O(3)PC(O)(CH(2)-3-C(5)NH(4))PO(3)}(2)](8-) (2), and [{Mo(V)(2)O(4)(H(2)O)}(4){O(3)PC(O)(CH(2)-3-C(5)NH(4))PO(3)}(4)](12-) (3). Polyanions 1-3 were prepared in a one-pot reaction of the dinuclear, dicationic {Mo(V)(2)O(4)(H(2)O)(6)}(2+) with 1-hydroxo-2-(3-pyridyl)ethylidenediphosphonate (Risedronic acid) in aqueous solution. Polyanions 1 and 2 are mixed-valent Mo(VI/V) species with open tetranuclear and hexanuclear structures, respectively, containing two diphosphonate groups. Polyanion 3 is a cyclic octanuclear structure based on four {Mo(V)(2)O(4)(H(2)O)} units and four diphosphonates. Polyanions 1 and 2 crystallized as guanidinium salts [C(NH(2))(3)](5)H[{Mo(VI)O(3)}(2){Mo(V)(2)O(4)}{HO(3)PC(O)(CH(2)-3-C(5)NH(4))PO(3)}(2)]·13H(2)O (1a) and [C(NH(2))(3)](6)H(2)[{Mo(VI)(2)O(6)}(2){Mo(V)(2)O(4)}{O(3)PC(O)(CH(2)-3-C(5)NH(4))PO(3)}(2)]·10H(2)O (2a), whereas polyanion 3 crystallized as a mixed sodium-guanidinium salt, Na(8)[C(NH(2))(3)](4)[{Mo(V)(2)O(4)(H(2)O)}(4){O(3)PC(O)(CH(2)-3-C(5)NH(4))PO(3)}(4)]·8H(2)O (3a). The compounds were characterized in the solid state by single-crystal X-ray diffraction, IR spectroscopy, and thermogravimetric and elemental analyses. The formation of polyanions 1 and 3 is very sensitive to the pH value of the reaction solution, with exclusive formation of 1 above pH 7.4 and 3 below pH 6.6. Detailed solution studies by multinuclear NMR spectrometry were performed to study the equilibrium between these two compounds. Polyanion 2 was insoluble in all common solvents. Detailed computational studies on the solution phases of 1 and 3 indicated the stability of these polyanions in solution, in complete agreement with the experimental findings.  相似文献   

2.
The reaction of cis-[Ru(NO)(CH(3)CN)(bpy)(2)](3+) (bpy = 2,2'-bipyridine) in H(2)O at room temperature proceeded to afford two new nitrosylruthenium complexes. These complexes have been identified as nitrosylruthenium complexes containing the N-bound methylcarboxyimidato ligand, cis-[Ru(NO)(NH=C(O)CH(3))(bpy)(2)](2+), and methylcarboxyimido acid ligand, cis-[Ru(NO)(NH=C(OH)CH(3))(bpy)(2)](3+), formed by an electrophilic reaction at the nitrile carbon of the acetonitrile coordinated to the ruthenium ion. The X-ray structure analysis on a single crystal obtained from CH(3)CN-H(2)O solution of cis-[Ru(NO)(NH=C(O)CH(3))(bpy)(2)](PF(6))(3) has been performed: C(22)H(20.5)N(6)O(2)P(2.5)F(15)Ru, orthorhombic, Pccn, a = 15.966(1) A, b = 31.839(1) A, c = 11.707(1) A, V = 5950.8(4) A(3), and Z = 8. The structural results revealed that the single crystal consisted of 1:1 mixture of cis-[Ru(NO)(NH=C(O)CH(3))(bpy)(2)](2+) and cis-[Ru(NO)(NH=C(OH)CH(3))(bpy)(2)](3+) and the structural formula of this single crystal was thus [Ru(NO)(NH=C(OH(0.5))CH(3))(bpy)(2)](PF(6))(2.5). The reaction of cis-[Ru(NO)(CH(3)CN)(bpy)(2)](3+) in dry CH(3)OH-CH(3)CN at room temperature afforded a nitrosylruthenium complex containing the methyl methylcarboxyimidate ligand, cis-[Ru(NO)(NH=C(OCH(3))CH(3))(bpy)(2)](3+). The structure has been determined by X-ray structure analysis: C(25)H(29)N(8)O(18)Cl(3)Ru, monoclinic, P2(1)/c, a = 13.129(1) A, b = 17.053(1) A, c = 15.711(1) A, beta = 90.876(5) degrees, V = 3517.3(4) A(3), and Z = 4.  相似文献   

3.
Two new compounds constructed from tetra-Ni-substituted sandwich-type polyoxometalates functionalized by organic groups, (NH(4))(2)[Ni(4)(enMe)(8)(H(2)O)(2)Ni(4)(enMe)(2)(PW(9)O(34))(2)].9H(2)O (enMe = 1,2-diaminopropane) (1) and Na(2)[H(6)N(2)(CH(2))(6)](2){Ni(4)[H(4)N(2)(CH(2))(6)](2)(H(2)PW(9)O(34))(2)}.7H(2)O (2), have been successfully synthesized under hydrothermal conditions. Single-crystal X-ray diffraction analysis is carried out on these two compounds (1 and 2), which both crystallize in the triclinic system. Compound 1 represents the first example of a 2D layer structure consisting of the sandwich-type polyoxoanions with six supporting [Ni(enMe)(2)](2+) moities and two organic functionalized groups. Compound 2 exhibits a 1D chain-like structure based on sandwich-type polyoxoanions and sodium cations, which are further connected into a 2D layer structure via hydrogen-bonding interactions between the 1,6-hexanediamine molecules and the sandwich-type [Ni(4)(H(4)N(2)(CH(2))(6))(2)(H(2)PW(9)O(34))(2)](6-) polyoxoanions. A magnetic study of the two compounds indicates that intramolecular ferromagnetic Ni-Ni interactions exist in the tetranuclear metal cluster.  相似文献   

4.
One flexible, discrete coordination cage [Cu(2)(3-BPFA)(4)(H(2)O)(2)](ClO(4))(4).4CH(3)OH (), and two cation-clusters with micro(2)-Cl bridging [Ni(2)(micro-Cl)(3-BPFA)(4)(H(2)O)(2)](ClO(4))(3) () and [Co(2)(micro-Cl)(3-BPFA)(4)(H(2)O)(2)](ClO(4))(4).4CH(3)OH (), containing the ferrocenyl functionality were prepared via coordination-driven self-assembly and Cl-anion template from Cu(II), Ni(II) and Co(II) salts and a flexible two-arm molecule 1,1-bis[(3-pyridylamino)carbonyl]ferrocene (3-BPFA).  相似文献   

5.
Iron-substituted crown-type polyoxometalate (POM) [P(8)W(48)O(184)Fe(16)(OH)(28)(H(2)O)(4)](20-) has been successfully immobilized onto glassy carbon electrode surfaces by means of the layer-by-layer (LBL) technique employing the cationic redox active dye, methylene blue (MB). The constructed multilayers exhibit pH-dependent redox activity for both the anionic POM and the cationic dye moieties, which is in good agreement with their solution behavior. The films have been characterized by alternating current impedance, atomic force microscopy, and X-ray photoelectron spectroscopy, whereby the nature of the outer layer within the assemblies was found to have an effect upon the film's behavior. Preliminary investigations show that the POM dye-based films show electrocatalytic ability toward the reduction of hydrogen peroxide, however, only when there is an outer anionic POM layer.  相似文献   

6.
The adducts formed between the antitumor active compounds [Rh(2)(O(2)CCH(3))(2)(CH(3)CN)(6)](BF(4))(2), Rh(2)(O(2)CCH(3))(4), and Rh(2)(O(2)CCF(3))(4) with DNA oligonucleotides have been assessed by matrix-assisted laser desorption ionization (MALDI) and nanoelectrospray (nanoESI) coupled to time-of-flight mass spectrometry (TOF MS). A series of MALDI studies performed on dipurine (AA, AG, GA, and GG)-containing single-stranded oligonucleotides of different lengths (tetra- to dodecamers) led to the establishment of the relative reactivity cis-[Pt(NH(3))(2)(OH(2))(2)](2+) (activated cisplatin) approximately Rh(2)(O(2)CCF(3))(4) > cis-[Pt(NH(3))(2)Cl(2)] (cisplatin) > [Rh(2)(O(2)CCH(3))(2)(CH(3)CN)(6)](BF(4))(2) > Rh(2)(O(2)CCH(3))(4) approximately Pt(C(6)H(6)O(4))(NH(3))(2) (carboplatin). The relative reactivity of the complexes is associated with the lability of the leaving groups. The general trend is that an increase in the length of the oligonucleotide leads to enhanced reactivity for Rh(2)(O(2)CCH(3))(2)(CH(3)CN)(6)](BF(4))(2) and Rh(2)(O(2)CCH(3))(4) (except for the case of [Rh(2)(O(2)CCH(3))(2)(CH(3)CN)(6)](2+), which reacts faster with the GG octamers than with the dodecamers), whereas the reactivity of Rh(2)(O(2)CCF(3))(4) is independent of the oligonucleotide length. When monitored by ESI, the dodecamers containing GG react faster than the respectiveAA oligonucleotides in reactions with Rh(2)(O(2)CCF(3))(4) and Rh(2)(O(2)CCH(3))(2)(CH(3)CN)(6)](BF(4))(2), whereas AA oligonucleotides react faster with Rh(2)(O(2)CCH(3))(4). The mixed (AG, GA) purine sequences exhibit comparable rates of reactivity with the homopurine (AA, GG) dodecamers in reactions with Rh(2)(O(2)CCH(3))(4). The observation of initial dirhodium-DNA adducts with weak axial (ax) interactions, followed by rearrangement to more stable equatorial (eq) adducts, was achieved by electrospray ionization; the Rh-Rh bond as well as coordinated acetate or acetonitrile ligands remain intact in these dirhodium-DNA adducts. MALDI in-source decay (ISD), collision-induced dissociation (CID) MS-MS, and enzymatic digestion studies followed by MALDI and ESI MS reveal that, in the dirhodium compounds studied, the purine sites of the DNA oligonucleotides interact with the dirhodium core. Ultimately, both MALDI and ESI MS proved to be complementary, valuable tools for probing the identity and stability of dinuclear metal-DNA adducts.  相似文献   

7.
Two novel peroxo titanium complexes, Li(2)(NH(4))(4)[Ti(2)(O(2))(2)(cit)(Hcit)](2).5H(2)O and Zn(NH(4))(4)[Ti(4)(O(2))(4)(Hcit)(2)(cit)(2)].12H(2)O (cit = citrate), show encouraging results in the photochemical oxidation of 2-propanol.  相似文献   

8.
Lu X  Shi X  Min T 《Inorganic chemistry》2011,50(6):2175-2181
Nanoaggregates such as nanowires, nanoparticles, nanotubules, and nanoribbons were prepared from bulk crystals, which are shaped as needles (1), blocks (2), tubules (3α), and plates (3β), respectively, by grinding and ultrasonication. Nanowires have diameters of approximately 2 nm, lengths of thousands of nanmeters, and the distance between adjacent nanowires is approximately 2 nm. The diameters of nanoparticles range from 3 to 5 nm. Nanotubules display diameters of 70 nm and lengths of thousands of nanometers, and nanoribbons exhibit widths of approximately 50 nm and lengths of hundreds of nanometers. All of the bulk crystals have been synthesized by the wet chemical method. Single-crystal X-ray diffraction reveals that crystal 1 is constituted by infinite one-dimensional {[NH(3)CH(2)CH(NH(2))CH(3)](C(6)H(4)O(2))[μ(2)-OC(6)H(4)O](Mo(VI)-O-Na-O)[NH(2)CH(2)CH(NH(2))CH(3)]}(n) (1), which acts as a parallel aligned quantum wire forming lamellas that assemble themselves into multilayered architecture. Crystal 2 consists of discrete [NH(3)CH(2)CH(NH(2))CH(3)](2)[Mo(VI)O(2)(O(2)C(6)H(4))(2)] (2), which presents as quantum particles and repeats itself along a three-dimensional crystal lattice. Crystal 3α, formed under 5 °C, and 3β, crystallized above 10 °C, are both composed of (NH(3)CH(2)CH(2)NH(2))(2)[Mo(VI)O(2)(O(2)C(6)H(4))(2)](NH(2)CH(2)CH(2)NH(2))(0.5) (3) but are packed in different ways. In crystal 3α, four [Mo(VI)O(2)(O(2)C(6)H(4))(2)](2-) circle into a quantum tube that is further assembled into multitubular architecture. However, in crystal 3β, two [Mo(VI)O(2)(O(2)C(6)H(4))(2)](2-) form a bilayered quantum lamellar motif that is piled into multilayered architecture. TEM reveals that all of the morphologies of the nanoaggregates are associated with the structures of the quantum motifs in their crystal lattices, which provide successful and effective access to assemble controlled nanostructures from quantum motifs of fine-desired and well-ordered bulk crystals. The technology of grinding and ultrasonication to prepare nanoaggregates is simple and available.  相似文献   

9.
The photochemical treatment of mu(3)-alkylidyne complexes [[TiCp*(mu-O)](3)(mu(3)-CR)] (R=H (1), Me (2), Cp*=eta(5)-C(5)Me(5)) with the amines (2,6-Me(2)C(6)H(3))NH(2), Et(2)NH, and Ph(2)NH and the imine Ph(2)C=NH leads to the partial hydrogenation of the alkylidyne moiety that is supported on the organometallic oxide, [Ti(3)Cp*O(3)], and the formation of new oxoderivatives [[TiCp*(3)(mu-CHR)(R'NR")] (R"=2,6-Me(2)C(6)H(3), R'=H, R=H (3), Me (4); R'=R"=Et, R=H (5), Me (6); R'=R"=Ph, R=H (7), Me (8)) and [[TiCp*(mu-O)](3)(mu-CHR)(N=CPh(2))] (R=H (9), R=Me (10)), respectively. A sequential transfer hydrogenation process occurs when complex 1 is treated with tBuNH(2), which initially gives the mu-methylene [[TiCp*(mu-O)](3)(mu-CH(2))(HNtBu)] (11) complex and finally, the alkyl derivative [[TiCp*(mu-O)](3)(mu-NtBu)Me] (12). Furthermore, irradiation of solutions of the mu(3)-alkylidyne complexes 1 or 2 in the presence of diamines o-C(6)H(4)(NH(2))(2) and H(2)NCH(2)CH(2)NH(2) (en) affords [[TiCp*(mu-O)](3)(mu(3)-eta(2)-NC(6)H(4)NH)] (13) and [[TiCp*(mu-O)](3)(mu(3)-eta(2)-NC(2)H(4)NH)] (14) by either methane or ethane elimination, respectively. In the reaction of 1 with en, an intermediate complex [[TiCp*(mu-O)](3)(mu-CH(2))(NHCH(2)CH(2)NH(2))] (15) is detected by (1)H NMR spectroscopy. Thermal treatment of the complexes 4-10 quantitatively regenerates the starting mu(3)-alkylidyne compounds and the amine R'(2)NH or the imine Ph(2)C=NH; however, heating of solutions of 3 or 4 in [D(6)]benzene or a equimolecular mixture of both at 170 degrees C produces methane, ethane, or both, and the complex [[TiCp*(mu-O)](3)[mu(3)-eta(2)-NC(6)H(3)(Me)CH(2)]] (16). The molecular structure of 8 has been established by single-crystal X-ray analysis.  相似文献   

10.
Six noninterpenetrating organic-inorganic hybridized coordination complexes, [Mn(3)(2)(H(2)O)(2)](ClO(4))(2).2 H(2)O (5), [Mn(3)(2)(H(2)O)(2)](NO(3))(2) (6), [Mn(3)(2)(N(3))(2)].2 H(2)O (7), [Cu(3)(2)(H(2)O)(2)](ClO(4))(2) (8), [Mn(4)(2)(H(2)O)(SO(4))].CH(3)OH.5 H(2)O (9) and [Mn(4)(2)](ClO(4))(2) (10) were obtained through self-assembly of novel tripodal ligands, 1,3,5-tris(1-imidazolyl)benzene (3) and 1,3-bis(1-imidazolyl)-5-(imidazol-1-ylmethyl)benzene (4) with the corresponding metal salts, respectively. Their structures were determined by X-ray crystallography. The results of structural analysis of complexes 5, 6, 7, and 8 with rigid ligand 3 indicate that their structures are mainly dependant on the nature of the organic ligand and geometric need of the metal ions, but not influenced greatly by the anions and metal ions. While in complexes 9 and 10, which contain the flexible ligand 4, the counteranion plays an important role in the formation of the frameworks. Entirely different structures of complexes 5 and 10 indicate that the organic ligands greatly affect the structures of assemblies. Furthermore, in complexes 5 and 6, the counteranions located between the cationic layers can be exchanged by other anions. Reversible anion exchanges between complexes 5 and 6 without destruction of the frameworks demonstrate that 5 and 6 can act as cationic layered materials for anion exchange, as determined by IR spectroscopy, elemental analyses, and X-ray powder diffraction.  相似文献   

11.
The donor-functionalised alkoxides [Et(2)Ga(OR)](2)(R = CH(2)CH(2)NMe(2)(1), CH(CH(2)NMe(2))(2)(2), CH(2)CH(2)OMe (3), CH(CH(3))CH(2)NMe(2)(4), C(CH(3))(2)CH(2)OMe (5)) were synthesised by the 1:1 reaction of Et(3)Ga with ROH in hexane or dichloromethane at room temperature. Reaction of Et(3)Ga with excess ROH in refluxing toluene resulted in the isolation of a 1:1 mixture of [Et(2)Ga(OR)](2) and the ethylgallium bisalkoxide [EtGa(OR)(2)](R = CH(2)CH(2)NMe(2)(6) or CH(CH(3))CH(2)NMe(2)(7)). X-ray crystallography showed that compound 6 is monomeric and this complex represents the first structurally characterised monomeric gallium bisalkoxide. Homoleptic gallium trisalkoxides [Ga(OR)(3)](2) were prepared by the 1:6 reaction of [Ga(NMe(2))(3)](2) with ROH (R = CH(2)CH(2)NMe(2)(8), CH(CH(3))CH(2)NMe(2)(9), C(CH(3))(2)CH(2)OMe (10)). The decomposition of compounds 1, 4, 5 and 8 were studied by thermal gravimetric analysis. Low pressure CVD of 1 and 5 resulted in the formation of thin films of crystalline Ga(2)O(3).  相似文献   

12.
Wei M  He C  Sun Q  Meng Q  Duan C 《Inorganic chemistry》2007,46(15):5957-5966
Polyoxometalate-based metal-organic frameworks {[Gd(dpdo)(4)(H(2)O)(3)](PMo(12)O(40))(H(2)O)(2)CH(3)CN}(n) (2), {[Dy(dpdo)(4)(H(2)O)(3)](PMo(12)O(40))(H(2)O)(20CH(3)CN}(n) (3), {[Gd(dpdo)(4)(H(2)O)(3)](H(3)O)(SiMo(12)O(40))(dpdo)(0.5)(CH(3)CN)(0.5) (H(2)O)(3)}(n) (4), {[Ho(dpdo)(4)(H(2)O)(3)](H(3)O)(SiMo(12)O(40))(dpdo)(0.5)(CH(3)CN)(0.5)(H(2)O)(3)}(n) (5), {[Ni(dpdo)(2)(CH(3)CN) (H(2)O)(2)](2)(SiMo(12)O(40))(H(2)O)(2)}(n) (6), and {[Ni(dpdo)(3)](4)(PW(12)O(40))(3)[H(H(2)O)(27)(CH(3)CN)(12)]}(n) (7) (where dpdo is 4,4'-bipyridine-N,N'-dioxide) were constructed via self-assembly by embedding Keggin-type polyanions within the intercrystalline voids as guests or pillars. Compounds 2 and 3 are isomorphic and exhibit three-dimensional (3D) noninterwoven 64 frameworks with distorted-honeycomb cavities occupied by the polyanions. Compounds 4 and 5 are comprised of 3D noninterwoven frameworks formed by linking the adjacent folded sheets through hydrogen bonds and pi-pi stacking interactions relative to the free isolated dpdo ligand. Compound 6 is a pillar-layered framework with the [SiMo(12)O(40)](4-) anions located on the square voids of the two-dimensional bilayer sheets formed by the dpdo ligands and nickel(II) ions. Compound 7 is a 3D metal-organic framework formed by nickel(II) and 4,4'-bipyridine-N,N'-dioxide with the globular Keggin-structure [PW(12)O(4)](3-) anion as the template. A large protonated water cluster H(+)(H(2)O)(27) is trapped and stabilized within the well-modulated cavity.  相似文献   

13.
New methods of preparing tellurium(II) dithiolates, Te(SR)(2), are presented. Te(SCH(2)CH(2)OAc)(2), 1, was made from Te(SCH(2)CH(2)OH)(2) by acetylation of the hydroxyl groups. Te(SCH(2)CH(2)SAc)(2), 2, [Te(SCH(2)CH(2)NH(3))(2)]Cl(2), 3, and Te(SC(6)H(4)(o-NH(2)))(2), 4, were synthesized by ligand exchange reactions of Te(S(t)Bu)(2) with 2 equiv of HSCH(2)CH(2)SAc, [HSCH(2)CH(2)NH(3)]Cl, and HSC(6)H(4)(o-NH(2)), respectively. Of all compounds, 4 exhibits the strongest thermal sensitivity toward decomposition and the largest low-field shift of the (125)Te NMR signal, two features that are attributed to weak Te.N interactions. The structural parameters of the CSTeSC unit exhibit very similar values for all four compounds, while the torsion angles of the side chains differ between the molecules, a feature rationalized by ab initio studies. In the solid state, different kinds of intermolecular aggregation and contacts to the Te atoms are present. 1 and 2 crystallize in the same space group (orthorhombic, Pbcn) and exhibit C(2) symmetric molecules, with two intermolecular Te.S contacts, leading to a trapezoidal coordination mode of the Te atoms. SCCE and C(S)CEC (with E = O, S) torsion angles represent the major differences between 1 and 2, which are attributed to their unlike intermolecular hydrogen bridges. In the solid state structure of 3, [Te(SCH(2)CH(2)NH(3))(2)](2+) cations and Cl(-) anions form a three-dimensional network via N-H...Cl and C-H...Cl hydrogen bonds (triclinic, P(-)1). Two neighboring [Te(SCH(2)CH(2)NH(3))(2)](2+) cations are linked via two Te...S contacts, and each Te atom forms one additional Te...Cl contact, resulting in a slightly distorted trapezoidal coordination mode. In the solid state structure of 4, adjacent molecules form Te...Te and Te...N contacts as well as hydrogen bridges. Two chemically different Te atoms are present, both of which are tetracoordinate with distorted sawhorse configurations. The absence of intramolecular Te...O, Te...S, or Te...N contacts in 1, 2, and 4, respectively, is attributed to the conformational rigidity of the CSTeS unit, where conformation ruling coordination is the case.  相似文献   

14.
Guest water molecules confined in channels of porous coordination polymer crystals [Ln(2)Cu(3)(IDA)(6)]·nH(2)O (Ln = La, Nd, Sm, Gd, Ho, Er; IDA = [NH(CH(2)COO)(2)](2-); n ≈ 9) exhibited large dielectric constants (ε) and antiferroelectric behaviors at high temperatures (e.g., ε(Sm) ≈ 1300 at 400 K). In addition, plots of the temperature dependence of ε showed broad peaks at ~170 K, below which ε became very small. These puzzling temperature dependences of ε are consistent with the results of molecular dynamics simulations, suggesting the "freezing of thermal motion" of water molecules at ~170 K.  相似文献   

15.
The synthesis and characterization of the novel systems [Zn(2)(H(2)N(CH(2))(2)NH(2))(5)][(Zn(H(2)N(CH(2))(2)NH(2))(2))(2)V(18)O(42)(H(2)O)].9H(2)O (1), [Cd(2)(H(2)N(CH(2))(2)NH(2))(5)][(Cd(H(2)N(CH(2))(2)NH(2))(2))(2)V(18)O(42)(Br)].9H(2)O (2), and [Zn(2)(H(2)N(CH(2))(2)NH(2))(5)][(Zn(H(2)N(CH(2))(2)NH(2))(2))(2)V(18)O(42)(Cl)].9H(2)O (3) have been described. These materials represent a new class of solids that have been prepared by combining conventional coordination compounds with spherical polyoxovanadate clusters. The isomorphous structures of these hybrid solids consist of two-dimensional arrays of container cluster molecules [V(18)O(42)(X)] (X = H(2)O, Br-, Cl-) interlinked by the transition metal complex moieties [M(H(2)N(CH(2))(2)NH(2))(2)] (M = Zn, Cd). These compounds contain an unprecedented complex cation, [M(2)(H(2)N(CH(2))(2)NH(2))(5)](4+). Crystal data for 1: C(9)H(46)N(9)O(26)V(9)Zn(2), monoclinic space group P2(1)/m (No. 11), a = 12.3723(7) A, b = 20.9837(11) A, c = 15.8379(8) A, beta = 97.3320(10) degrees, Z = 4.  相似文献   

16.
Hydrogen-bonded assemblies of the two-electron reduced mixed-valence Keggin clusters [PMo(12)O(40)](5-) and [SiMo(12)O(40)](6-) were obtained by the one-pot electron-transfer reactions between p-phenylenediamine (PPD) or 2,3,5,6-tetramethyl-PPD (TMPPD) (donors) and H(+)(3)[PMo(12)O(40)](3-) or H(+)(4)[SiMo(12)O(40)](4-) (acceptors) in CH(3)CN. The redox states of the [PMo(12)O(40)](5-) and [SiMo(12)O(40)](6-) clusters were confirmed by the redox titrations and electronic absorption measurements. In (HPPD(+))(3)(H(+))(2)[PMo(12)O(40)](5-)(CH(3)CN)(3-6) (1), the N-H ~ O hydrogen-bonded interactions between the monoprotonated HPPD(+) (or diprotonated H2PPD(2+)) and the [PMo(12)O(40)](5-) resulted in a windmill-like assembly and hydrophilic one-dimensional channels are formed with a cross-sectional area of 0.065 nm(2), and these are filled by the CH(3)CN molecules. Also, the CH(3)CN molecules in salt 1 were removed by immersing the single crystals of 1 into H(2)O, CH(3)OH, and C(2)H(5)OH solvents. In the compound, (HTMPPD(+))(6)[SiMo(12)O(40)](6-)(CH(3)CN)(6) (2), the N-H ~ O hydrogen-bonded interactions between the monoprotonated HTMPPD(+) molecules and the [SiMo(12)O(40)](6-) formed a "Saturn-ring"-like assembly. Each Saturn-ring was arranged into an hexagonally packed array via hydrogen-bonded and π-stacking interactions of HTMPPD(+), while the CH(3)CN solvent present in salt 2 are only found in the zero-dimensional isolated cavities.  相似文献   

17.
The reaction of a double-betaine-containing ligand with LnPMo(12)O(40)·nH(2)O (Ln = Dy, Tb and Er) led to the isolation of new polyoxometalate-templated lanthanide-organic hybrid layers with the molecular formula [Ln(L)(1.5)(H(2)O)(5)][PMo(12)O(40)]·1.5CH(3)CN·2H(2)O (Ln = Dy (1), Tb (2) and Er (3); L = 1,4-bis(pyridinil-4-carboxylato)-l,4-dimethylbenzene). All compounds were characterized by elemental analyses, TG analyses, IR and the single-crystal X-ray diffraction. Compounds 1-3 are isostructural and possess a 2D undulating cationic network [Ln(L)(1.5)(H(2)O)(5)](n)(3n+) with the honeycomb-like cavities. Interestingly, the interval 2D networks are further connected by the H-bonds to form a 3D supramolecular framework. Moreover, two of such identical supramolecular frameworks are 2-fold interpenetrated with each other and encapsulate the α-Keggin-type [PMo(12)O(40)](3-) anionic templates and the solvent molecules. These composite compounds display both luminescent properties (induced by organic ligands and/or lanthanide ions) and electrocatalytic activities towards the reduction of nitrite.  相似文献   

18.
The aquapentacyanoferrate(II) ion, [Fe(II)(CN)(5)H(2)O](3-), catalyzes the disproportionation reaction of O-methylhydroxylamine, NH(2)OCH(3), with stoichiometry 3NH(2)OCH(3) → NH(3) + N(2) + 3CH(3)OH. Kinetic and spectroscopic evidence support an initial N coordination of NH(2)OCH(3) to [Fe(II)(CN)(5)H(2)O](3-) followed by a homolytic scission leading to radicals [Fe(II)(CN)(5)(?)NH(2)](3-) (a precursor of Fe(III) centers and bound NH(3)) and free methoxyl, CH(3)O(?), thus establishing a radical path leading to N-methoxyamino ((?)NHOCH(3)) and 1,2-dimethoxyhydrazine, (NHOCH(3))(2). The latter species is moderately stable and proposed to be the precursor of N(2) and most of the generated CH(3)OH. Intermediate [Fe(III)(CN)(5)L](2-) complexes (L = NH(3), H(2)O) form dinuclear cyano-bridged mixed-valent species, affording a catalytic substitution of the L ligands promoted by [Fe(II)(CN)(5)L](3-). Free or bound NH(2)OCH(3) may act as reductants of [Fe(III)(CN)(5)L](2-), thus regenerating active sites. At increasing concentrations of NH(2)OCH(3) a coordinated diazene species emerges, [Fe(II)(CN)(5)N(2)H(2)](3-), which is consumed by the oxidizing CH(3)O(?), giving N(2) and CH(3)OH. Another side reaction forms [Fe(II)(CN)(5)N(O)CH(3)](3-), an intermediate containing the nitrosomethane ligand, which is further oxidized to the nitroprusside ion, [Fe(II)(CN)(5)NO](2-). The latter is a final oxidation product with a significant conversion of the initial [Fe(II)(CN)(5)H(2)O](3-) complex. The side reaction partially blocks the Fe(II)-aqua active site, though complete inhibition is not achieved because the radical path evolves faster than the formation rates of the Fe(II)-NO(+) bonds.  相似文献   

19.
The compounds [K(18-crown-6)](3)[Ir(Se(4))(3)] (1), [K(2.2.2-cryptand)](3)[Ir(Se(4))(3)].C(6)H(5)CH(3) (2), and [K(18-crown-6)(DMF)(2)][Ir(NCCH(3))(2)(Se(4))(2)] (3) (DMF = dimethylformamide) have been prepared from the reaction of [Ir(NCCH(3))(2)(COE)(2)][BF(4)] (COE = cyclooctene) with polyselenide anions in acetonitrile/DMF. Analogous reactions utilizing [Rh(NCCH(3))(2)(COE)(2)][BF(4)] as a Rh source produce homologues of the Ir complexes; these have been characterized by (77)Se NMR spectroscopy. [NH(4)](3)[Ir(S(6))(3)].H(2)O.0.5CH(3)CH(2)OH (4) has been synthesized from the reaction of IrCl(3).nH(2)O with aqueous (NH(4))(2)S(m)(). In the structure of [K(18-crown-6)](3)[Ir(Se(4))(3)] (1) the Ir(III) center is chelated by three Se(4)(2)(-) ligands to form a distorted octahedral anion. The structure contains a disordered racemate of the Deltalambdalambdalambda and Lambdadeltadeltadelta conformers. The K(+) cations are pulled out of the planes of the crowns and interact with Se atoms of the [Ir(Se(4))(3)](3)(-) anion. [K(2.2.2-cryptand)](3)[Ir(Se(4))(3)].C(6)H(5)CH(3) (2) possesses no short K.Se interactions; here the [Ir(Se(4))(3)](3)(-) anion crystallizes as the Deltalambdalambdadelta/Lambdadeltadeltalambda racemate. In the crystal structure of [K(18-crown-6)(DMF)(2)][Ir(NCCH(3))(2)(Se(4))(2)] (3), the K(+) cation is coordinated by an 18-crown-6 ligand and two DMF molecules and the anion comprises an octahedral Ir(III) center bound by two chelating Se(4)(2)(-) chains and two trans acetonitrile groups. The [Ir(Se(4))(3)](3)(-) and [Rh(Se(4))(3)](3)(-) anions undergo conformational transformations as a function of temperature, as observed by (77)Se NMR spectroscopy. The thermodynamics of these transformations are: [Ir(Se(4))(3)](3)(-), DeltaH = 2.5(5) kcal mol(-)(1), DeltaS = 11.5(2.2) eu; [Rh(Se(4))(3)](3)(-), DeltaH = 5.2(7) kcal mol(-)(1), DeltaS = 24.7(3.0) eu.  相似文献   

20.
Reactions of niobium and tantalum pentachlorides with tert-butylamine (>/=6 equiv) in benzene afford the dimeric imido complexes [NbCl(2)(N(t)Bu)(NH(t)Bu)(NH(2)(t)Bu)](2) (90%) and [TaCl(2)(N(t)Bu)(NH(t)Bu)(NH(2)(t)Bu)](2) (79%). The niobium complex exists as two isomers in solution, while the tantalum complex is composed of three major isomers and at least two minor isomers. Analogous treatments with isopropylamine (>/=7 equiv) give the monomeric complexes NbCl(2)(N(i)Pr)(NH(i)Pr)(NH(2)(i)Pr)(2) (84%) and TaCl(2)(N(i)Pr)(NH(i)Pr)(NH(2)(i)Pr)(2) (84%). The monomeric complexes are unaffected by treatment with excess isopropylamine, while the dimeric complexes are cleaved to the monomers MCl(2)(N(t)Bu)(NH(t)Bu)(NH(2)(t)Bu)(2) upon addition of excess tert-butylamine in chloroform solution. Treatment of niobium and tantalum pentachlorides with 2,6-diisopropylaniline affords insoluble precipitates of [NH(3)(2,6-(CH(CH(3))(2))(2)C(6)H(3))](2)[NbCl(5)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))] (100%) and [NH(3)(2,6-(CH(CH(3))(2))(2)C(6)H(3))](2)[TaCl(5)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))] (100%), which react with 4-tert-butylpyridine to afford the soluble complexes [4-t-C(4)H(9)C(5)H(4)NH](2)[NbCl(5)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))] (45%) and [4-t-C(4)H(9)C(5)H(4)NH](2)[TaCl(5)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))] (44%). Sublimation of [NbCl(2)(N(t)Bu)(NH(t)Bu)(NH(2)(t)Bu)](2), MCl(2)(N(i)Pr)(NH(i)Pr)(NH(2)(i)Pr)(2), and [NH(3)(2,6-(CH(CH(3))(2))(2)C(6)H(3))](2)[MCl(5)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))] leads to decomposition to give [MCl(3)(NR)(NH(2)R)](2) as sublimates (32-49%), leaving complexes of the proposed formulation MCl(NR)(2) as nonvolatile residues. By contrast, [TaCl(2)(N(t)Bu)(NH(t)Bu)(NH(2)(t)Bu)](2) sublimes without chemical reaction. Analysis of the organic products obtained from thermal decomposition of [NbCl(2)(N(t)Bu)(NH(t)Bu)(NH(2)(t)Bu)](2) showed isobutylene and tert-butylamine in a 2.2:1 ratio. Mass spectra of [NbCl(2)(N(t)Bu)(NH(t)Bu)(NH(2)(t)Bu)](2), [TaCl(2)(N(t)Bu)(NH(t)Bu)(NH(2)(t)Bu)](2), and [NbCl(3)(N(i)Pr)(NH(2)(i)Pr)](2) showed the presence of dimeric imido complexes, monomeric imido complexes, and nitrido complexes, implying that such species are important gas phase species in CVD processes utilizing these molecular precursors. The crystal structures of [4-t-C(4)H(9)C(5)H(4)NH](2)[NbCl(5)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))], [NbCl(3)(N(i)Pr)(NH(2)(i)Pr)](2), [NbCl(3)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))(NH(2)(2,6-(CH(CH(3))(2))(2)C(6)H(3)))](2), and [TaCl(3)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))(NH(2)(2,6-(CH(CH(3))(2))(2)C(6)H(3)))](2) were determined. [4-t-C(4)H(9)C(5)H(4)NH](2)[NbCl(5)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))] crystallizes in the space group P2(1)/c with a = 12.448(3) ?, b = 10.363(3) ?, c = 28.228(3) ?, beta = 94.92(1) degrees, V = 3628(5) ?(3), and Z = 4. [NbCl(3)(N(i)Pr)(NH(2)(i)Pr)](2) crystallizes in the space group P2(1)/c with a = 9.586(4) ?, b = 12.385(4) ?, c = 11.695(4) ?, beta = 112.89(2) degrees, V = 1279.0(6) ?(3), and Z = 2. [NbCl(3)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))(NH(2)(2,6-(CH(CH(3))(2))(2)C(6)H(3)))](2) crystallizes in the space group P2(1)/n with a = 10.285(3) ?, b = 11.208(3) ?, c = 23.867(6) ?, beta = 97.53 degrees, V = 2727(1) ?(3), and Z = 2. [TaCl(3)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))(NH(2)(2,6-(CH(CH(3))(2))(2)C(6)H(3)))](2) crystallizes in the space group P2(1)/n with a = 10.273(1) ?, b = 11.241(2) ?, c = 23.929(7) ?, beta = 97.69(2) degrees, V = 2695(2) ?(3), and Z = 2. These findings are discussed in the context of niobium and tantalum nitride film depositions from molecular precursors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号