首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Rapid rotation of guanine base derivatives about Pt-N7 bonds results in fluxional behavior of models of the key DNA intrastrand G-G cross-link leading to anticancer activity of Pt(II) drugs (G = deoxyguanosine). This behavior impedes the characterization of LPtG2 models (L = one bidentate or two cis-unidentate carrier ligands; G = guanine derivative not linked by a phosphodiester group). We have examined the formation of LPtG2 adducts with G = 5'- and 3'-GMP and L = sp(2) N-donor bidentate carrier ligands [5,5'-dimethyl-2,2'-bipyridine (5,5'-Me2bipy), 3-(4'-methylpyridin-2'-yl)-5,6-dimethyl-1,2,4-triazine) (MepyMe2t), and bis-3,3'-(5,6-dialkyl-1,2,4-triazine) (R4dt)]. NMR spectroscopy provided conclusive evidence that these LPt(5'-GMP)2 complexes exist as interconverting mixtures of head-to-tail (HT) and head-to-head (HH) conformers. For a given G, the rates of G base rotation about the Pt-N7 bonds of LPtG2 models decrease in the order Me4dt > Et4dt > MepyMe2t > 5,5'-Me2bipy. This order reveals that the pyridyl ring C6 atom + H atom grouping is large enough to impede the rotation, but the equivalently placed triazine ring N atom + N lone pair grouping is sterically less impeding. For the first time, the two possible HH conformers (HHa and HHb) in the case of an unsymmetrical L have been identified in our study of (MepyMe2t)Pt(5'-GMP)2. Although O6-O6 clashes involving the two cis G bases favor the HT over the HH arrangement for most LPtG2-type complexes, the HH conformer of (R4dt)Pt(5'-GMP)2 adducts has a high abundance (approximately 50%). We attribute this high abundance to a reduction in O6-O6 steric clashes permitted by the overall low steric effects of R4dt ligands. Under the reaction conditions used, 3'-GMP forms a higher abundance of the LPt(GMP)2 adduct than does 5'-GMP, a result attributable to more favorable second-sphere communication in the LPt(3'-GMP)2 adduct than in the LPt(5'-GMP)2 adduct.  相似文献   

2.
The syntheses and spectroscopic characterization of two 1,2,4-triazole-based oxovanadium(V) complexes are reported: 1- [VO2L1]- and 2 [(VOL2)2(OMe)2] (where H2L1 = 3-(2'-hydroxyphenyl)-5-(pyridin-2' '-yl)-1H-1,2,4-triazole, H3L2 = bis-3,5-(2'-hydroxyphenyl)-1H-1,2,4-triazole). The ligand environment (N,N,O vs O,N,O) is found to have a profound influence on the properties and reactivity of the complexes formed. The presence of the triazolato ligand allows for pH tuning of the spectroscopic and electrochemical properties, as well as the interaction and stability of the complexes in the presence of hydrogen peroxide. The vanadium(IV) oxidation states were generated electrochemically and characterized by UV-vis and EPR spectroscopies. For 2, under acidic conditions, rapid exchange of the methoxide ligands with solvent [in particular, in the vanadium(IV) redox state] was observed.  相似文献   

3.
Synthesis of seven complexes containing oxazoline ([(L(1))(2)V=O] (4), [(L(1))(2)MoO(2)] (5), [(L(1))(2)UO(2)] (6); HL(1) (1) [HL(1) = 2-(4',4'-dimethyl-3'-4'-dihydroxazol-2'-yl)phenol]), chiral oxazoline ([(L(2))(2)UO(2)] (7); HL(2) (2) [HL(2) = (4'R)-2-(4'-ethyl-3'4'-dihyroxazol-2'-yl)phenol]), and oxazine ([(L(3))(2)V=O] (8), [(L(3))(2)Mn(CH(3)COO(-))] (9), [(L(3))(2)Co] (10); HL(3) (3) [HL(3) = 2-(5,6-dihydro-4H-1,3-oxazolinyl)phenol]) and their characterization by various techniques such as UV-vis, IR, and EPR spectroscopy, mass spectrometry, cyclic voltammetry, and elemental analysis are reported. The novel oxazine (3) and complexes 4, 5, 8 and 9 were also characterized by X-ray crystallography. Oxazine 3 crystallizes in the monoclinic system with the P2(1)/n space group, complexes 4 and 9 crystallize in the monoclinic system with the P2(1)/c space group, and complexes 5 and 8 crystallize in the orthorhombic system with the C222(1) space group and the P2(1)2(1)2(1) chiral space group, respectively. The representative synthetic procedure involves the reaction of metal acetate or acetylacetonate derivatives with corresponding ligand in ethanol. Addition of Mn(OAc)(2).4H(2)O to an ethanol solution of 3 gave the unexpected complex Mn(L(3))(2).(CH(3)COO(-)) (9) where the acetate group is coordinated with the metal center in a bidentate fashion. The catalytic activity of complexes 4-9 for oxidation of styrene with tert-butyl hydroperoxide was tested. In all cases, benzaldehyde formed exclusively as the oxidation product.  相似文献   

4.
Journal of Structural Chemistry - A new cobalt(II) complex of 5-phenyl-3-(pyridin-2-yl)-1,2,4-triazine (PPTA), [Co(PPTA)2(NO3)2] (1), is prepared and identified by the elemental analysis, FTIR...  相似文献   

5.
Reactions of 3-[(2-bromoprop-2-en-1-yl)sulfanyl]-5H-[1,2,4]triazino[5,6-b]indole with bromine and of 3-[(2-methylprop-2-en-1-yl)sulfanyl]-5H-[1,2,4]triazino[5,6-b]indole with iodine and bromine afforded 3-halomethyl-10H-[1,3]thiazolo[3′,2′: 2,3][1,2,4]triazino[5,6-b]indol-4-ium halides whose structures were determined by 1H NMR and X-ray analysis.  相似文献   

6.
2-Amino-6,7-dihydrothieno[3′,2′:5,6]pyrido[2,3-rf]pyrimidin-4-one ( 1 ) was prepared in three steps from S-(3-butynyl)thiosemicarbazide hydroiodide ( 3 ) and diethyl ketomalonate. The featured step in this synthetic sequence was an intramolecular Diels-Alder reaction of the in situ generated 3-(3-butynylthio)-6-carboethoxy-5-chloro-1,2,4-triazine ( 9 ) to provide the key intermediate 5-carboethoxy-6-chloro-2,3-dihydrothieno-[2,3-b]pyridine ( 6 ). In the course of studies directed toward the preparation of 1 , thermolysis of 3-(3-butynyl-thio)-6-carboethoxy-1,2,4-triazin-5(2H)-one ( 2 ) was found to involve competitive intramolecular Diels-Alder and intramolecular coplanar cycloamination processes, providing the 2,3-dihydrothieno[2,3-b]pyridin-6(7H)-one ( 4 ) and the 1,3-thiazino[3,2-b]-1,2,4-triazin-3-one (5) derivatives, respectively.  相似文献   

7.
Platinum anticancer drug DNA intrastrand cross-link models, LPt(d(G*pG*)) (G* = N7-platinated G residue, L = R(4)dt = bis-3,3'-(5,6-dialkyl)-1,2,4-triazine), and R = Me or Et), undergo slow Pt-N7 bond rotation. NMR evidence indicated four conformers (HH1, HH2, ΔHT1, and ΛHT2); these have different combinations of guanine base orientation (head-to-head, HH, or head-to-tail, HT) and sugar-phosphodiester backbone propagation relative to the 5'-G* (the same, 1, or opposite, 2, to the direction in B DNA). In previous work on LPt(d(G*pG*)) adducts, Pt-N7 rotation was too rapid to resolve conformers (small L with bulk similar to that in active drugs) or L was too bulky, allowing formation of only two or three conformers; ΛHT2 was not observed under normal conditions. The (R(4)dt)Pt(d(G*pG*)) results support our initial hypothesis that R(4)dt ligands have Goldilocks bulk, sufficient to slow G* rotation but insufficient to prevent formation of the ΛHT2 conformer. Unlike the (R(4)dt)Pt(5'-GMP)(2) adducts, ROESY spectra of (R(4)dt)Pt(d(G*pG*)) adducts showed no EXSY peaks, a result providing clear evidence that the sugar-phosphodiester backbone slows conformer interchange. Indeed, the ΛHT2 conformer formed and converted to other conformers slowly. Bulkier L (Et(4)dt versus Me(4)dt) decreased the abundance of the ΛHT2 conformer, supporting our initial hypothesis that steric crowding disfavors this conformer. The (R(4)dt)Pt(d(G*pG*)) adducts have a low abundance of the ΔHT1 conformer, consistent with the proposal that the ΔHT1 conformer has an energetically unfavorable phosphodiester backbone conformation; its high abundance when L is bulky is attributed to a small d(G*pG*) spatial footprint for the ΔHT1 conformer. Despite the Goldilocks size of the R(4)dt ligands, the bases in the (R(4)dt)Pt(d(G*pG*)) adducts have a low degree of canting, suggesting that the ligand NH groups characteristic of active drugs may facilitate canting, an important aspect of DNA distortions induced by active drugs.  相似文献   

8.
A series of substituted pyridine-2-carbaldehydes were brought into heterocyclization with isonitrosoacetophenone hydrazones, followed by aromatization by the action of oxidants or by dehydration in boiling acetic acid. As a result, substituted 3-(pyridin-2-yl)-1,2,4-triazines or 3-(pyridin-2-yl)-1,2,4-triazine 4-oxides were formed. 6-Formylpyridine-2-carbonitrile failed to undergo heterocyclization, 6-methylpyridine-2-carbaldehyde and methyl 6-formylpyridine-3-carboxylate can be converted to both 1,2,4-triazine and 1,2,4-triazine 4-oxide derivative, and only 1,2,4-triazine 4 oxides were obtained from 6-bromopyridine-2-carbaldehyde and 6-formyl-3-phenylpyridine-2-carbonitrile. Convenient procedures were proposed for the synthesis of some initial pyridinecarbaldehydes.  相似文献   

9.
On the basis of X-ray crystallographic data on molecular crystals of zinc complexes with 3-(pyridin-2-yl)-5-(arylideneiminophenyl)-1H-1,2,4-triazoles, quantum-chemical analysis of the electron density distribution function for these complexes has been performed by Bader’s atoms in molecules method. Topological parameters of electron density at the critical points of coordination and noncovalent bonds have been interpreted, and the bond energies have been estimated using the Espinosa equation. For the solvated complex Zn[(L3)(OAc)2] · i-PrOH (L3 = 3-(pyridin-2-yl)-5-(benzylideneiminophenyl)-1H-1,2,4-triazole), a variable coordination number of the Zn2+ ion has been predicted as a result of dynamic dissociation/formation of an unstable Zn-O coordination bond. For the binuclear [Zn2(L2)2] complex (L2 = 3-(pyridin-2-yl)-5-(salicylideneiminophenyl)-1H-1,2,4-triazole), an orbital interpretation of the decrease in the fluorescence quantum yield in tetrahydrofuran and dimethyl sulfoxide as compared with free L2 ligand is presented.  相似文献   

10.
A new cobalt(Ⅱ) complex, [CoL2(NCS)2]·2CH2Cl2, [L=4-(p-methylphenyl)-3,5-bis(pyridin-2-yl)-1,2,4-triazole], was synthesized and its crystal structure was determined by X-ray analysis. The complex crystallizes in monoclinic system with space group P21/c, a=0.867 40(17), b=1.453 9(3), c=1.781 9(4) nm, β=91.18(3)°, V=2.246 7(8) nm3 and Z=2. The cobalt atom is in a distorted octahedral environment with two bidentate chelating L ligands in the equatorial plane and two NCS- ions in the axial positions. CCDC: 251658.  相似文献   

11.
Diethoxyphosphinyl acetic acid hydrazide is a unique reagent that provides a convenient and efficient process to prepare fused [5,5]-, [5,6]-, and [5,7]-3-[(E)-2-(arylvinyl)]-1,2,4-triazoles from aldehydes and alkoxyimines. The process involves three steps without isolation of any intermediates to afford 1,2,4-triazoles in modest to excellent overall yield.  相似文献   

12.
Abstract

Two complexes of 5,6-di(2-furyl)-3-(2-pyridyl)-1,2,4-triazine (L), [Co(L)2(NO3)2] (1), and [Ni(L)2(NO3)2] (2), were prepared and identified along with L by elemental analysis, FT-IR, UV-Vis, and 1H NMR spectroscopies and single-crystal X-ray diffraction. All coordination modes of the 1,2,4-triazine unit and also of the nitrato ligand in coordination with cobalt and nickel atoms were studied by analysis of the Cambridge Structural Database (CSD) to compare with the new results. X-ray structure analysis of complexes 1 and 2 revealed that the metal atom in both complexes has an octahedral geometry with MN4O2 environment (M: Co (1), Ni (2)). The ligand acts as a bidentate NtzNpy-donor and forms a five-membered planar chelate ring. In addition to the hydrogen bonds, the crystal network is stabilized by ππ stacking interactions between pyridine rings of the ligands of adjacent complexes. The thermodynamic stability of the two conformational isomers of the 5,6-di(2-furyl)-3-(2-pyridyl)-1,2,4-triazine and their charge distribution patterns were studied by DFT and NBO analysis, respectively. The ability of the uncoordinated ligand conformers and complexes 1 and 2 to interact with nine selected biomacromolecules (BRAF kinase, CatB, DNA gyrase, HDAC7, rHA, RNR, TrxR, TS, and Top II) was investigated by docking calculations and compared with that of doxorubicin. Also an analog of the ligand in which the furyl rings are replaced by phenyl groups is included in these studies.  相似文献   

13.
Beta-Amino alcohols N-2'-pyridylmethyl substituted 3 have been prepared in excellent yields under mild conditions by the first Lewis acid-catalyzed aminolysis of 1,2-epoxides 1 with the bihaptic amine 2-picolylamine (2) with use of 5 mol % of Al(OTf)(3) under solvent-free conditions. As a representative of a new class of ionic liquids, cis-5-[(4'-methylphenyl)sulfonyl]-1,2,3,4,4a,5,6,11a-octahydropyrido[1,2-a]quinoxalin-11-ium methanesulfonate (6) and its chloride derivative 7 have been synthesized under environmentally friendly conditions by the one-pot aminolysis of cyclohexene oxide (1a) with 2 and intramolecular cyclization of the resulting 2-[(pyridin-2'-yl)methylamino]cyclohexanol (3a).  相似文献   

14.
Condensation of Ph(2)PH and paraformaldehyde with 2-amino-7-methyl-1,8-naphthyridine gave the new flexible tridentate ligand 2-[N-(diphenylphosphino)methyl]amino-7-methyl-1,8-naphthyridine (L). Reaction of L with [Cu(CH(3)CN)(4)]BF(4) and/or different ancillary ligands in dichloromethane afforded N,P chelating or bridging luminescent complexes [(L)(2)Cu(2)](BF(4))(2), [(micro-L)(2)Cu(2)(PPh(3))(2)](BF(4))(2) and [(L)Cu(CNN)]BF(4) (CNN = 6-phenyl-2,2'-bipyridine), respectively. Complexes [(L)(2)Pt]Cl(2), [(L)(2)Pt](ClO(4))(2) and [(L)Pt(CNC)]Cl (CNC = 2,6-biphenylpyridine) were obtained from the reactions of Pt(SMe(2))(2)Cl(2) or (CNC)Pt(DMSO)Cl with L. The crystal structures and photophysical properties of the complexes are presented.  相似文献   

15.
As part of our continuing interest in the chemistry of cationic antimony Lewis acids as ligands for late transition metals, we have now investigated the synthesis of platinum complexes featuring a triarylstibine ligand substituted by an o-[(dimethylamino)methyl]phenyl group referred to as ArN. More specifically, we describe the synthesis of the amino stibine ligand Ph2SbArN (L) and its platinum dichloride complex [LPtCl]Cl which exists as a chloride salt and which shows weak coordination of the amino group to the antimony center. We also report the conversion of [LPtCl]Cl into a tricationic complex [LHPt(SMe2)]3+ which has been isolated as a tris-triflate salt after reaction of [LPtCl]Cl with SMe2, HOTf and AgOTf. Finally, we show that [LHPt(SMe2)][OTf]3 acts as a catalyst for the cyclization of 2-allyl-2-(2-propynyl)malonate.  相似文献   

16.
Abstract

The electron impact induced fragmentation reactions of 3-(4-chlorophenyl)-3,4- dihydro-2-ethoxy-2-oxido-7-methyl-2H,6H-[1,2,4]triazino[4,3-e][1,4,5,2]thiadiazaphosphin in-6-one (1), 3,7-dimethyl-2-ethoxy-2-oxido-1,2,3,4-tetrahydro-6H-[1,2,4]triazino[4,3-b][1,2,4,5]triazaphosphinin-6-one (2), and 9-amino-3,7-dimethyl-4-ethoxy-4-oxido-2,3,4,9-tetrahydro-8H-[1,2,4]triazino[3,2-c][1,2,4,5]triazaphosphinin-8-one (3) are presented and compared. The 1,2,4-triazine rings have almost identical fragmentation routes. The 1,2,4-triazine rings are rather stable relative to the phosphorus rings. Therefore, fragmentation of the phosphorus rings is more favorable for the compounds than the stable 1,2,4-triazine rings.  相似文献   

17.
When dissolved in liquid ammonia 5-chloro-1,2-dihydropyrimido[5,4-e]-1,2,4-triazine ( 1 ) and 5-methoxy-pyrimido[5,4e]-1,2,4-triazine ( 4 ) quickly convert into 5-aminopyrimido[5,4-e]-1,2,4-triazine ( 2 ). When 2 is kept in liquid ammonia containing an excess of potassium permanganate, 3,5-diaminopyrimido[5,4-e]-1,2,4-triazine ( 5 ) is formed.  相似文献   

18.
Two cadmium complexes, {[Cd(a-ptt)(ptt)]·H2O} n (1) and [Cd(a-Hmtt)2(SO4)H2O]·CH3OH (2), have been prepared based on 4-amino-3-(4-pyridine)-5-mercapto-1,2,4-triazole (a-Hptt) and 4-amino-3-methyl-5-mercapto-1,2,4-triazole (a-Hmtt), respectively. In 1, amino-triazole ligand a-Hptt can partly be deaminated and transformed into 3-(4-pyridine)-5-mercapto-triazole (Hptt) under hydrothermal conditions. X-ray diffraction analysis reveals that 1 exhibits an unusual 2-D lampshade-type layer structure in which the amino ligand a-ptt and the deamination ligand ptt display exo-tridentate bridging and bidentate bridging, respectively. Complex 2 is mononuclear and further assembled into a 3-D supramolecular architecture via non-covalent interactions. Complexes 1 and 2 were characterized by elemental analyses, IR, and thermogravimetric analyses. Furthermore, solid-state luminescent properties of 1 and 2 have also been investigated.  相似文献   

19.
A series of new N- and S-substituted 1,3,4-oxadiazole derivatives were synthesized. 5-Pyridin-3-yl-3-[2-(5-thioxo-4,5-dihydro-l,3,4-thiadiazol-2-yl)ethyl]-1,3,4-oxadiazole-2(3H)-thione and 5-[(5-(pyridin-3-yl)-1,3,4-oxadiazol-2-ylthio)methyl]-N-phenyl-1,3,4-thiadiazol-2-amine were formed by cyclization of 3-(5-pyridin-3-yl-2-thioxo-1,3,4-oxadiazol-3(2H)-ylpropanimidohydrazide and 2-[(5-pyridin-3-yl-1,3,4-oxadiazol-2-yl)thio]thiosemicarbazide with CS2 and H2SO4. On the other hand, a number of new bicyclic 1,2,4-triazolo[3,4-b][1,3,4]thiadiazole derivatives were synthesized. 6-Pyridin-3-ylbis[1,2,4]‐triazolo[3,4-b:4′,3′-d][1,3,4]thiadiazole-3(2H)-thione was synthesized by reaction of 6-(hydrazino)-3-pyridine-3-yl[1,2,4]triazolo[3,4-b][1,3,4]thiadiazole with CS2/KOH/EtOH. The structures of the newly synthesized compounds were elucidated by the spectral and analytical data IR, Mass, and 1H NMR spectra. Correspondence: Adel A.-H. Abdel-Rahman, Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Koam, Egypt; Wael A. El-Sayed, National Research Centre, Department of Photochemistry, Cairo, Egypt.  相似文献   

20.
Reactions of 3,5-dibromo-1-(thiiran-2-ylmethyl)-1,2,4-triazole with 3,5-dimethylpyrazole, 1,3-dimethyl-3,7-dihydropurine-2,6-dione, 3,5-dibromo-1,2,4-triazole, 2,4,5-tribromoimidazole, and 2-chlorobenzimidazole lead to the formation of 5-azolylmethyl-2-bromo-5,6-dihydrothiazolo[3,2-b]-1,2,4-triazoles. In the case of 8-bromo-1,3-dimethyl-3,7-dihydropurine-2,6-dione the intermediate thiolate anion undergoes cyclization into 7-[(3,5-dibromo-1,2,4-triazol-1-yl)methyl]-1,3-dimethyl-6,7-dihydrothiazolo[2,3-f]purine-2,4(1H,3H)-dione. The structure of reaction products depends on the relative rate of substitution of leaving groups in the reagents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号