首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
采用间断有限元方法、LS方法和通量装配技术相结合,建立了一种计算可压缩多介质流动的有效 方法。计算中以光滑Heavside函数构造流体比热比和重新初始化方程中的符号距离函数,并采用通量装配 技术抑制界面附近的非物理振荡。为解决可压缩多介质流动提供一种新的手段。  相似文献   

2.
运用动网格上的ALE方法对一维可压缩多介质Riemann问题进行求解,在处理介质界面上的数值通量时提出了3种不同的数值方法:Lagrange方法、GFM和HLLC方法,并且对这3种方法的数值结果进行了比较,认为GFM方法和HLLC方法在介质界面上出现大压力梯度时能够明显消除界面上密度的非物理震荡,提高介质界面上数值解的精度.  相似文献   

3.
针对不可压缩可压缩水/气多介质问题, 提出一种新的界面处理方法。在可压缩水/气界面处构造Riemann问题, 在水中设音速趋于无穷大, 求解Riemann问题得到不可压缩可压缩水/气界面处流体的准确流动状态; 然后以此状态结合GFM(ghost fluid method)方法分别为2种流体定义界面边界条件, 将两相流问题转化为单相流问题计算, 通过求解level set方程来跟踪界面的位置。对各种不同的界面边界条件定义方法进行了比较, 数值模拟结果表明算法能准确地捕捉各类间断的位置, 证明了算法的有效性和稳健性。  相似文献   

4.
多介质可压缩流体动力学界面捕捉方法   总被引:2,自引:0,他引:2  
研究多介质流界面捕捉方法的主要目的是消除多介质流体在界面处压力、速度可能出现的非物理振荡现象 ,并通过流体动力学方程和界面捕捉方程的耦合 ,将多介质流体动力学计算形式上转化为单介质流体计算 ,从而可以采用对计算单介质有效的高精度计算方法来处理多介质流动问题。推广了Shyue界面捕捉和其等效方程的推导方法 ,给出的结果可以适用于具有状态方程 p =( ,e,a1 , ,an) +( ,e,b1 , ,bn)e的介质 ,并通过了数值试验验证。  相似文献   

5.
非结构动网格在多介质流体数值模拟中的应用   总被引:1,自引:1,他引:0  
采用非结构动网格方法对含多介质的流场进行数值模拟.采用改进的弹簧方法来处理由于边界运动而产生的网格变形.采用基于格心的有限体积方法求解守恒型的ALE(Arbitrary Lagrangiall-Eulerian)方程,控制面通量的计算采用HLLC(Hartem,Lax,van Leer,Contact)方法,采用几何构造的方法使空间达到二阶精度,时间离散采用四阶Runge-Kutta方法.物质界面的处理采用虚拟流体方法.本文对含动边界的激波管、水下爆炸等流场进行数值模拟,取得较好的结果,不同时刻界面的位置和整个扩张过程被准确模拟.  相似文献   

6.
可压缩多介质粘性流体的数值计算   总被引:1,自引:0,他引:1  
将考虑热传导和粘性情况下的Navier Stokes方程描述的物理过程分解成3个子过程进行数值计算,即把整个流量计算分解成无粘性流量、粘性流量和热流量3部分,采用多介质流体高精度parabolic piecewise method(PPM)方法、二阶空间中心差方法和两步Rung-Kutta时间推进方法相结合进行数值计算。给出了激波管中Riemann问题和二维、三维Richtmyer-Meshkov界面不稳定性的Navier Stokes方程和Euler方程对比计算结果,显示了粘性对界面不稳定性的影响。  相似文献   

7.
姚成宝  付梅艳  韩峰  闫凯 《力学学报》2020,52(4):1063-1079
可压缩多介质流动问题的数值模拟在国防和工业领域内均具有重要的研究价值,诸如武器设计、爆炸安全防护等,通常具有大变形、高度非线性等特点,是一项极具挑战性的研究课题. 本文提出了一种基于 Euler 坐标系的非结构网格、具有锐利相界面的二维和三维守恒型多介质流动数值方法,可用于模拟可压缩流体和弹塑性固体在极端物理条件下的大变形动力学行为. 利用分片线性的水平集函数重构出单纯形网格内分段线性的相界面,并在混合网格内构建出具有多种介质的相界面几何结构,理论上可以处理全局任意种介质、局部 3 种介质的多介质流动问题. 利用传统的有限体积格式来计算单元边界上同种介质间的数值通量,并通过在相界面法向上求解局部一维多介质 Riemann 问题的精确解来计算不同介质间的数值通量,保证了相界面上的通量守恒. 提出了一种非结构网格上的单元聚合算法,消除了由于网格被相界面分割成较小碎片、违反 CFL 条件,进而可能带来数值不稳定的问题. 针对一维多介质 Riemann 问题、激波与气泡相互作用问题、浅埋爆炸问题、空中强爆炸冲击波和典型坑道内冲击波传播问题开展了数值模拟研究,将计算结果与相关的理论、实验结果进行比对,验证了数值方法的正确性和可靠性.   相似文献   

8.
时刻追踪多介质界面运动的动网格方法   总被引:1,自引:0,他引:1  
在对可压缩多介质流动的数值模拟中,定义介质界面为一种内部边界,由网格的边组成,界面边两侧对应两种不同介质中的网格。通过求解Riemann问题追踪介质界面上网格节点的运动,同时采用局部重构的动网格技术处理介质界面的大变形问题,并将介质界面定义为网格变形边界,以防止该边界上网格体积为负。运用HLLC格式求解ALE方程组得到整个多介质流场的数值解。最后从几个多介质流模型的计算结果可以看出,本文的动网格方法是可行的,而且可以时刻追踪介质界面的运动状态。  相似文献   

9.
Level Set方法和多介质可压缩流   总被引:1,自引:1,他引:0  
多介质可压缩流问题计算的关键是如何精确的捕获不同时刻物质界面的位置,从而将多介质问题分解成多个单介质问题去处理.Level Set方法的优点是不用显示的追踪物质界面,而用距离函数就能精确定位界面.同时,用Level Set方法追踪界面运动易于处理界面拓扑结构的变化、易于处理大变形问题.本文成功地将Level Set方法应用在二维多介质可压缩流计算.  相似文献   

10.
利用CE/SE(conservation element and solution element )格式研究了柱面会聚波在气体中传播时间断面的不稳定问题和波阵面的演变问题,并利用level set函数追踪了驱动气体与低压气体间断面的发展过程。得到了间断面的Rayleigh-Taylor(R-T)和Richtmyer-Meshkov(R-M)不稳定性发展成典型的尖钉和气泡结构的图像,初始正弦扰动下的会聚波产生尖角和尖瓣结构。结果表明,CE/SE格式在涉及会聚波的数值计算中是可行的。  相似文献   

11.
In this work a new ghost fluid method (GFM) is introduced for multimaterial compressible flow with arbitrary equation of states. In previous researches, it has been shown that accurate wave decomposition at the interface by solving a Riemann problem alleviates the shortcomings of the standard GFM in dealing with the impingement of strong waves onto the interface but these Riemann‐based GFM are not consistent with the framework of the central WENO scheme in which the emphasis is to avoid solving Riemann problems at control volume faces and enjoy the black box property (being independent of equation of state). The aim of this work is to develop a new GFM that is completely consistent with the methodology behind central schemes; that is, it enjoys a black box property. The capabilities of the proposed GFM method is shown by solving various types of multimaterial compressible flows including gas–gas, gas–water and fluid–solid interfaces interacting with strong shock waves in one and two space dimensions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
首先将三阶Godunov型半离散中心迎风格式推广到四阶,之后再将该新的四阶半离散中心迎风格式与Level Set方法以及虚拟流方法结合起来,成功地处理了非反应激波问题和多介质流中的爆轰间断问题。由于Level Set函数能隐式地追踪到界面的位置,而虚拟流的构造能隐式地捕捉到界面的边界条件,故而本文的方法可以很自然地推广到多维情况。  相似文献   

13.
In this paper, we introduce numerical methods that can simulate complex multiphase flows. The finite volume method, applying Cartesian cut-cell is used in the computational domain, containing fluid and solid, to conserve mass and momentum. With this method, flows in and around any geometry can be simulated without complex and time consuming meshing. For the fluid region, which involves liquid and gas, the ghost fluid method is employed to handle the stiffness of the interface discontinuity problem. The interaction between each phase is treated simply by wall function models or jump conditions of pressure, velocity and shear stress at the interface. The sharp interface method “coupled level set (LS) and volume of fluid (VOF)” is used to represent the interface between the two fluid phases. This approach will combine some advantages of both interface tracking/capturing methods, such as the excellent mass conservation from the VOF method and good accuracy of interface normal computation from the LS function. The first coupled LS and VOF will be generated to reconstruct the interface between solid and the other materials. The second will represent the interface between liquid and gas.  相似文献   

14.
In order to capture the material interface dynamics, especially under the impact of strong shocks, the key feature of the modified ghost fluid method (MGFM) is to construct a multimaterial Riemann problem normal to the interface and use its solution to define interface conditions. However, such process sometimes may not be easily or accurately implemented when the multidimensional interfaces come into contact or undergo significant deformations. In this article, a three-dimensional interface treating procedure is developed for a wide range of compressible multimaterial flows. It utilizes the MGFM with an explicit approximate Riemann problem solver to define interface conditions. More importantly, a weighted average technique is designed to optimize the treatment for interfaces exhibiting large curvature and topological change. This remedies two defects of the traditional approach in these extreme cases. One is that the normal directions of interfacial ghost nodes may not be easily calculated. The other is that the interface conditions may not be accurately defined. The numerical methodology is validated through several typical problems, including gas-liquid Riemann problem and shock-bubble/droplet interaction. These results indicate that the developed method is capable of dealing with interfacial evolutions in three dimensions, especially when interfaces undergo merger, fragmentation, and other complex changes.  相似文献   

15.
为了解决原来的ghost fluid方法在计算强激波和界面相互作用时界面附近出现的速度和压力振荡问题,对原来的ghost fluid方法进行了改进,通过在界面处构造Riemann问题并求出界面的压力和速度,ghost fluid流体的压力和速度分别用界面的压力和速度代替,ghost流体的密度通过熵常数外推得到。改进的ghost fluid保持了原来的ghost fluid的简单性,对一维强激波与气-气、气-液界面的相互作用问题以及射流问题进行了数值计算,得到了分辨率较高的计算结果。  相似文献   

16.
给出了求解多维无粘可压Euler方程组的四阶半离散中心迎风格式,该格式根据非线性波在网格单元边界上传播的局部速度来更准确地估计局部Riemann的宽度,避免了计算网格的交错,降低了格式的数值粘性。同时,考虑到Level Set函数能隐式地追踪到界面的位置,而虚拟流的构造能隐式地捕捉到界面的边界条件,因此再将新的四阶半离散中心迎风格式与Level Set方法以及虚拟流方法相结合,成功地处理了非反应激波和多介质流中爆轰间断的追踪问题。  相似文献   

17.
A coupled ghost fluid/two‐phase level set method to simulate air/water turbulent flow for complex geometries using curvilinear body‐fitted grids is presented. The proposed method is intended to treat ship hydrodynamics problems. The original level set method for moving interface flows was based on Heaviside functions to smooth all fluid properties across the interface. We call this the Heaviside function method (HFM). The HFM requires fine grids across the interface. The ghost fluid method (GFM) has been designed to explicitly enforce the interfacial jump conditions, but the implementation of the jump conditions in curvilinear grids is intricate. To overcome these difficulties a coupled GFM/HFM method was developed in which approximate jump conditions are derived for piezometric pressure and velocity and pressure gradients based on exact continuous velocity and stress and jump in momentum conditions with the jump in density maintained but continuity of the molecular and turbulent viscosities imposed. The implementation of the ghost points is such that no duplication of memory storage is necessary. The level set method is adopted to locate the air/water interface, and a fast marching method was implemented in curvilinear grids to reinitialize the level set function. Validations are performed for three tests: super‐ and sub‐critical flow without wave breaking and an impulsive plunging wave breaking over 2D submerged bumps, and the flow around surface combatant model DTMB 5512. Comparisons are made against experimental data, HFM and single‐phase level set computations. The proposed method performed very well and shows great potential to treat complicated turbulent flows related to ship flows. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号