首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Atomically precise Au nanoclusters (NCs) have emerged as fascinating fluorescent nanomaterials and attracted considerable research interest in both fundamental research and practical applications. Due to enhanced quantum confinement, they possess extraordinary optical, electronic, and magnetic properties and therefore are very promising for a wide range of applications, including biosensing, bioimaging, catalysis, photonics, and molecular electronics. Remarkable progress has been reported for the fundamental understanding, synthesis techniques, and applications. In this review, the updated advances are summarized in Au NCs, including synthesis techniques, optical properties, and applications. In particular, we focus on the optical properties and electron dynamic processes. In addition, the progress in other noble metallic NCs is included in this Review, such as Ag, Cu, Pt, and alloy, which have attracted much research interest recently. Finally, an outlook is presented for such fascinating nanomaterials in both aspects of future fundamental research and potential applications.  相似文献   

2.
金属纳米颗粒的等离激元共振引起的局域场增强效应,对显微成像、光谱学、半导体器件、非线性光学等诸多领域都具有极大的应用潜力。尤其是在光学纳米材料领域,通过亚波长金属纳米颗粒与电介质的组合引起局域场增强效应,提高了纳米材料的光学性能,并促进纳米材料在光学领域的应用。本文主要综述几种常见纳米结构所产生的局域场增强效应及其应用,详细介绍并总结了金属纳米材料的不同结构参数与局域场增强的关系及局域场增强在非线性光学、光谱学、半导体器件等领域的应用。未来,随着对金属纳米材料的研究愈发深入,局域场增强的应用将更加广泛,这将对诸多领域的发展产生重要影响。  相似文献   

3.
We report the preparation of cerium-containing nanoparticles by a simple yet efficient hydrothermal synthesis process using cerium resource and NaF mineralizer with no surfactant or template. We demonstrate that morphology and chemistry of the synthesized CeO2 and CeF3 nanomaterials can be manipulated via tuning concentration of the mineralizer NaF alone. The synthesis mechanism, chemical evolution, and optical properties of the harvested nanomaterials have also been investigated. The ceria and its hybrid system are found to exhibit an excellent UV-shielding capability, which provides further evidence that the mineralizer NaF is critical for governing the morphology and properties of the cerium-containing nanomaterials. Such a facile method to synthesize the functional nano-crystallites with tunable morphology and chemistry by tailoring the concentration of mineralizer alone should be applicable to other types of nanomaterials and relevant for a wide range of applications.  相似文献   

4.
In recent years, carbon-based fluorescent nanomaterials have been developed rapidly in biology and biomedicine due to their high optical absorptivity, adjustable fluorescent emission, chemical stability, well biocompatibility, and low toxicity. Their applications in temperature sensing have become one of the research hotspots. In this review, the authors summarize and sort out the carbon-based fluorescent nanothermometers in the following work: 1) the types and temperature-response mechanism of carbon-based fluorescent nanomaterials are discussed; 2) the preparation methods of colorimetric fluorescent carbon-based thermometers are introduced; 3) the applications of single/double emission carbon-based fluorescent nanothermometers have been focused on. Finally, the authors give their own views on the future development direction of carbon-based fluorescent nanothermometers. This review can provide guidance for the design and application of novel carbon-based fluorescent nanothermometers.  相似文献   

5.
Nanomaterials have attracted much attention from academic to industrial research. General methodologies are needed to impose architectural order in low-dimensional nanomaterials composed of nanoobjects of various shapes and sizes, such as spherical particles, rods, wires, combs, horns, and other non specified geometrical architectures. These nanomaterials are the building blocks for nanohybrid materials, whose applications have improved and will continuously enhance the quality of the daily life of mankind. In this article, we present a comprehensive review on the synthesis, dimension, properties, and present and potential future applications of nanomaterials and nanohybrids. Due to the large number of review articles on specific dimension, morphology, or application of nanomaterials, we will focus on different forms of nanomaterials, such as, linear, particulate, and miscellaneous forms. We believe that almost all the nanomaterials and nanohybrids will come under these three categories. Every form or dimension or morphology has its own significant properties and advantages. These low-dimensional nanomaterials can be integrated to create novel nano-composite material applications for next-generation devices needed to address the current energy crisis, environmental sustainability, and better performance requirements. We discuss the synthesis, properties, and morphology of different forms of nanomaterials (building blocks). Moreover, we elaborate on the synthesis, modification, and application of nanohybrids. The applications of these nanomaterials and nanohybrids in sensors, solar cells, lithium batteries, electronic, catalysis, photocatalysis, electrocatalysis, and bio-based applications will be detailed. The time is now ripe to explore new nanohybrids that use individual nanomaterial components as basic building blocks, potentially affording additionally novel behavior and leading to new, useful applications. In this regard, the combination or integration of linear nanorods/nanowires and spherical nanoparticles to produce mixed-dimensionality, higher-level nanocomposites of greater complexity is an interesting theme, which we explore in this review article.  相似文献   

6.
Technologies employing nanomaterials, such as electronics, optoelectronics, nanobiotechnologies, quantum optics, and nanophotonics, are perceived as the key drivers of investigations on novel and functional materials and their nanostructures for various applications. It is well understood that the study of such materials and structures has been of great importance for the optimization and development of electrical and optical devices. From such devices, one does not only expect higher efficiencies, but also access to the development of completely new concepts, which are strongly demanded by modern information-processing, quantum, or medical technologies, and sensing applications. In this context, a wide range of aspects such as the physics of novel materials, as well as materials engineering, characterization, and applications are summarized here. Novel materials, which can be used, for instance, for energy harvesting or light generation, as well as for future logic devices; material engineering, which can lead to improved device functionality and performance in optoelectronics; material physics, the study of which allows insight to be gained into optical and electrical properties of nanostructured systems and quantum materials; and technologies/devices, addressing progress on the application side of sophisticated material systems and quantum structures, are highlighted using representative examples.  相似文献   

7.
氧化石墨烯作为石墨烯的一种带隙打开的衍生物,极大地丰富了其光学性质,并拓展了它在传感和成像方面的应用,特别是氧化石墨烯限域的π共轭结构对构建发光碳材料提供了十分便利的条件。目前,有大量的研究工作报道了氧化石墨烯及其衍生物能够产生多种颜色的荧光信号,然而,系统地总结这些研究去揭示氧化石墨烯发光机理的相关工作还比较少。本文总结了关于发光氧化石墨烯纳米材料的合成及其在光学成像方面应用的大量研究工作,为进一步开发新型的发光氧化石墨烯材料提供一些建设性意见。  相似文献   

8.
Carbon-based nanomaterials are gaining more and more interest because of their wide range of applications. Carbon dots (CDs) have shown exclusive interest due to unique and novel physicochemical, optical, electrical, and biological properties. Since their discovery, CDs became a promising material for wide range of research applications from energy to biomedical and tissue engineering applications. At same time several new methods have been developed for the synthesis of CDs. Compared to many of these methods, the sonochemical preparation is a green method with advantages such as facile, mild experimental conditions, green energy sources, and feasibility to formulate CDs and doped CDs with controlled physicochemical properties and lower toxicity. In the last five years, the sonochemically synthesized CDs were extensively studied in a wide range of applications. In this review, we discussed the sonochemical assisted synthesis of CDs, doped CDs and their nanocomposites. In addition to the synthetic route, we will discuss the effect of various experimental parameters on the physicochemical properties of CDs; and their applications in different research areas such as bioimaging, drug delivery, catalysis, antibacterial, polymerization, neural tissue engineering, dye absorption, ointments, electronic devices, lithium ion batteries, and supercapacitors. This review concludes with further research directions to be explored for the applications of sonochemical synthesized CDs.  相似文献   

9.
Peptide-based nanomaterials have been utilized for various applications from regenerative medicine to electronics since they provide several advantages including easy synthesis methods, numerous routes for functionalization and biomimicry of secondary structures of proteins which leads to design of self-assembling peptide molecules to form nanostructures. Microscopic characterization at nanoscale is critical to understand processes directing peptide molecules to self-assemble and identify structure-function relationship of the nanostructures. Here, fundamental studies in microscopic characterization of peptide nanostructures are discussed to provide insights in widely used microscopy tools. In this review, we will encompass characterization studies of peptide nanostructures with modern microscopes, such as TEM, SEM, AFM, and advanced optical microscopy techniques. We will also mention specimen preparation methods and describe interpretation of the images.  相似文献   

10.
Nanomaterials and their associated technologies hold promising opportunities for the development of new materials and applications in a wide variety of disciplines, including medicine, environmental remediation, waste treatment, and energy conservation. However, current information regarding the environmental effects and health risks associated with nanomaterials is limited and sometimes contradictory. This article summarizes the conclusions of a 2008 NATO workshop designed to evaluate the wide-scale implications (e.g., benefits, risks, and costs) of the use of nanomaterials on human health and the environment. A unique feature of this workshop was its interdisciplinary nature and focus on the practical needs of policy decision makers. Workshop presentations and discussion panels were structured along four main themes: technology and benefits, human health risk, environmental risk, and policy implications. Four corresponding working groups (WGs) were formed to develop detailed summaries of the state-of-the-science in their respective areas and to discuss emerging gaps and research needs. The WGs identified gaps between the rapid advances in the types and applications of nanomaterials and the slower pace of human health and environmental risk science, along with strategies to reduce the uncertainties associated with calculating these risks.  相似文献   

11.
Abstract

In recent years, many nanomaterials-assisted chemiluminescence (CL) systems have been developed to improve the sensitivity and to expand the scope of their analytical applications. In these new systems, nanomaterials participate in CL reactions as catalysts, labels, reductants, luminophors, or energy acceptors. This review mainly focuses on the recent analytical applications of metal nanoparticles, magnetic nanoparticles, quantum dots (QDs), and carbon-based nanomaterials (carbon nanotubes and graphene) in liquid-phase CL systems. Recent advances in electrochemiluminescence based on nanotechnology and its analytical applications, especially in immunoassay, DNA analysis, and other biological analyses, are also summarized. Finally, we discuss some critical challenges in this field and speculate about their solutions. A total of 177 references mainly in the last 5 years are included in this review.  相似文献   

12.
Cerebrovascular diseases (CVDs) are among the most serious diseases with high mortality and disability rates. The prevalent diagnosis and treatment methods of CVDs include imaging and interventional therapy. With the development of nanotechnology, large numbers of nanomaterials have been applied to the diagnosis and treatment of CVDs, mainly including carbon nanotubes, quantum dots, fullerenes, and dendrimers. In this review, the applications of nanomaterials in the field of diagnosis and treatment of CVDs, mainly including drug target delivery, imaging, therapy, endovascular treatment, and angiogenesis, are summarized. The applications of nanomaterials in the field of CVD are almost in the laboratory, and more effort is needed for clinical translation. The aim of this review is to provide useful information for future research and equipment development.  相似文献   

13.
The spatial self-phase modulation (SSPM) of phosphorus-based nanomaterials is widely studied and developed as passive nonlinear photonic devices for applications in all-optical switches, logic gates, information converters, etc. In this work, violet phosphorus quantum dots (VP QDs) are prepared and characterized in three different solvents, their SSPM is investigated, and their spatial asymmetric light propagation performances are demonstrated. It is shown that VP QDs prepared in three different solvents exhibit different bandgaps, mainly due to the interaction between the dangling bonds of VP QDs and functional groups in different solvents. The SSPM experiment characterizes the nonlinear optical response of solvent-dependent VP QDs. It is found that VP QDs exhibit strong nonlinear optical effect and their nonlinear refractive indexes are comparable to other phosphorus-based 2D materials. Unlike the previously reported principle of spatial asymmetric light propagation (i.e., a cascaded sample based on SSPM composed of nanomaterials with excellent nonlinear refraction and SnS2 with reverse saturation absorption), the spatial asymmetric light propagation performance based on SSPM is demonstrated using a cascaded sample of VP QDs with significantly different nonlinear optical response prepared in two different solvents.  相似文献   

14.
Optical properties of nanomaterials such as semiconductor and metal quantum dots are important for sensors and photovoltaic applications. We report on optical, microscopic, and AFM investigations on bulk and single nanoobjects such as metal and semiconducting nanoparticles. Firstly, of special interest is the investigation of Ag metal nanoaggregates formed in zeolites. Here, the defined structure of the zeolite serves both as size directing and a stabilizing agent. The size selected Ag aggregates fluoresce in the zeolite cages even after storage under ambient conditions for almost one year. In addition, single Ag particles escape the cages and can be investigated by fluorescence microscopy also with respect to sensor applications. Secondly, with respect to photovoltaic applications, energy transfer among organic dye molecules and semiconductor quantum dots is of great importance. We report on the extension of the optical absorption of ZnSe quantum dots into the UV regime and investigate excitation energy transfer within self-assembled nanoaggregates of surface functionalized QDs and fluorescent styrylpyridine dyes.  相似文献   

15.
郭泽堃  田颜  甘海波  黎子娟  张彤  许宁生  陈军  陈焕君  邓少芝  刘飞 《物理学报》2017,66(21):217702-217702
随着石墨烯研究的兴起,二维纳米材料得以迅速发展.在众多的二维纳米材料中,硼烯和碱土金属硼化物二维材料由于具有高费米速度、高杨氏模量、高透光性、高延展性、高度的各向异性、大的泊松比和高的化学稳定性等独特的性质,成为研究人员关注的焦点.本文侧重介绍目前硼烯和碱土金属硼化物二维纳米材料的制备工艺、结构、物性和应用情况.首先总结了目前硼烯的主要结构构型和制备及掺杂工艺;其次介绍了碱土金属硼化物二维纳米材料的理论结构构型和可能的制备路线;最后对硼烯和二维碱土金属硼化物纳米材料的物理特性进行归纳总结,同时预测它们未来最可能实现应用的领域.  相似文献   

16.
无机纳米发光材料由于其独特的发光性质,具有广泛的应用前景。本文结合作者的科研经历,展望了无机纳米发光材料未来的发展机遇和挑战,聚焦该领域前沿“痛点”和“冷门”,探讨研究工作如何面向国家重大需求。倡议科学家应走出自己的研究舒适区,树立自己的标签性工作,共同推进无机纳米发光材料研究的可持续发展。  相似文献   

17.
The development of novel structure, fabrication methods, formation mechanisms, and versatile applicability of boron nitride (BN) nanomaterials is still one of the research hotspots. In this report, we developed a novel two dimensional cubic boron nitride nanosheets (2D c-BNNSs) based on the first principles calculations. This structure is converted from hexagonal BN (h-BN) bilayers induced by hydroxyl (OH) radical and fluoride (F) atom codoping. The geometrical, electronic, and optical properties of the novel 2D OH radical and F atom codoped c-BNNSs (OH-F-c-BNNSs) have been systematically investigated. The results reveal that the unpaired electrons appear due to the electronegativity difference between OH radical and F atoms, resulting in the excellent electrical and magnetic properties of OH-F-c-BNNSs. In addition, OH-F-c-BNNSs also exhibit a strong response to the visible light with an absorption range covering the whole visible light region. More importantly, when the doping positions of OH radical and F atom are exchanged (F-OH-c-BNNSs), the F-OH-c-BNNS will have only electrical conductivity, which will make us to regulate the intrinsic properties of c-BNNSs for different applications only by adjusting the element doping positions. This work can provide a theoretical and experimental basis/support for designing and fabricating new types of 2D c-BN nanomaterials for different applications.  相似文献   

18.
As one of the greatest inventions in the 20 th century, ultrafast lasers have offered new opportunities in the areas of basic scientific research and industrial manufacturing. Optical modulators are of great importance in ultrafast lasers, which directly affect the output laser performances. Over the past decades, significant efforts have been made in the development of compact, controllable, repeatable, as well as integratable optical modulators(i.e., saturable absorbers). In this paper, we review the fundamentals of the most widely studied saturable absorbers, including semiconductor saturable absorber mirrors and low-dimensional nanomaterials. Then, different fabrication technologies for saturable absorbers and their ultrafast laser applications in a wide wavelength range are illustrated. Furthermore, challenges and perspectives for the future development of saturable absorbers are discussed and presented. The development of ultrafast lasers together with the continuous exploration of reliable saturable absorbers will open up new directions for the mass production of the nextgeneration optoelectronic devices.  相似文献   

19.
氧化物纳米材料的多种应用与其表面结构和性质密切相关.近年来,固体核磁共振波谱在相关研究中提供了关键信息.本综述总结了近期发展的、以固体核磁共振波谱为主的两种表征氧化物纳米材料表面结构和性质的方法,包括表面选择的同位素标记17O核磁共振波谱与动态核极化表面增强核磁共振波谱,并对氧化物纳米材料的固体核磁共振波谱研究的发展趋势进行了展望.  相似文献   

20.
One-dimensional (1-D) semiconductor nanostructures can effectively transport electrons and photons, and are considered to be promising building blocks for future optoelectronic nanodevices. In this review, we present our recent efforts to integrate optical techniques and in situ electron microscopy for comprehensively characterizing individual 1-D optoelectronic nanostructures and nanodevices. The technical strategies and their applications in “green” emission and optical confinement in 1-D ZnO nanostructures will be introduced. We also show in situ assembly and characterization of nanostructures for optoelectronic device purposes. Using these examples, we demonstrate that the combination of optical techniques and in situ electron microscopy can be powerful for the studies of optoelectronic nanomaterials and nanodevices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号