首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, ultrasonic irradiation was utilized for improving the corrosion resistance of phosphate coatings on aluminum alloys. The chemical composition and morphology of the coatings were analyzed by X-ray diffraction analysis (XRD) and scanning electron microscopy (SEM). The effect of ultrasonic irradiation on the corrosion resistance of phosphate coatings was investigated by polarization curves and electrochemical impedance spectroscopy (EIS). Various effects of the addition of Nd2O3 in phosphating bath on the performance of the coatings were also investigated. Results show that the composition of phosphate coating were Zn3(PO4)2 · 4H2O(hopeite) and Zn crystals. The phosphate coatings became denser with fewer microscopic holes by utilizing ultrasonic irradiation treatment. The addition of Nd2O3 reduced the crystallinity of the coatings, with the additional result that the crystallites were increasingly nubby and spherical. The corrosion resistance of the coatings was also significantly improved by ultrasonic irradiation treatment; both the anodic and cathodic processes of corrosion taking place on the aluminum alloy substrate were suppressed consequently. In addition, the electrochemical impedance of the coatings was also increased by utilizing ultrasonic irradiation treatment compared with traditional treatment.  相似文献   

2.
Calcium silicate hydrate (CSH) consisting of nanosheets has been successfully synthesized assisted by a tip ultrasonic irradiation (UI) method using calcium nitrate (Ca(NO3)·4H2O), sodium silicate (Na2SiO3·9H2O) and sodium dodecyl sulfate (SDS) in water. Systematic studies found that reaction time of ultrasonic irradiation and concentrations of surfactant (SDS) in the system were important factors to control the crystallite size and morphologies. The products were characterized by X-ray power diffraction (XRD), field emission scanning electron microscopy (FESEM) and Fourier transform infrared spectrometry (FTIR). The size–strain plot (SSP) method was used to study the individual contributions of crystallite sizes and lattice strain on the peak broadening of the CSH. These characterization techniques revealed the successful formation of a crystalline phase with an average crystallite size of about 13 nm and nanosheet morphology at a reaction time of 10 min UI with 0.2 g SDS in solvent which were found to be optimum time and concentrations of SDS for the synthesis of CSH powders.  相似文献   

3.
A study of the stability of calcium carbonate polymorphs formed as a result of the carbonation process from an alcoholic colloidal solution of nanocrystals of Ca(OH)2 in low relative humidity (RH) conditions (33% and 54% RH) is presented in this research. The crystalline behavior, the time dependence of nucleation and the phases’ transformations as a result of exposure to low humidity conditions are evaluated. The carbonation process is slow, starting with the nucleation of amorphous calcium carbonate, associated to an amorphization process that affects both the portlandite (Ca(OH)2) and the initial unstable CaCO3 polymorphs. The excess of alcohol in the solution decreases the surface tension and the nucleation is accelerated by the fast evaporation of the solvent, which avoids the particles to diffuse to their lowest energy sites, giving smaller particles with lower crystallinity as RH decreases.  相似文献   

4.
NiMoO4 nanorods have been successfully synthesized by sonochemical method process by using Ni(CH3COO)2·4H2O and (NH4)6Mo7O24·4H2O as starting materials. Some parameters including ultrasonic power, ultrasonic irradiation time, stirring effect, solvent effect, and surfactant effect were investigated to reach optimum condition. The as synthesized nanostructures were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmittance electron microscopy (TEM), photoluminescence (PL) spectroscopy, Fourier transform infrared (FT-IR) spectra and energy dispersive X-ray microanalysis (EDX). Facile preparation and separation are important features of this route. This work has provided a general, simple, and effective method to control the composition and morphology of NiMoO4 in aqueous solution, which will be important for inorganic synthesis methodology.  相似文献   

5.
Surfactant template synthesis attracts great attention in the fields of biomaterials and functional materials. In this study, highly ordered lamellar hydroxyapatite (Lα-HA) powder was synthesized by a surfactant templating method in water-ethanol. Ca(NO3)2 and (NH4)2HPO4 were used as calcium and phosphorus sources, respectively. Sodium dodecyl sulphonate (SDS, C12H25SO3Na) acted as the template. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analyses showed that HA is the only crystal phase in Lα-HA. Transmission electron microscope (TEM) observation further proved this regular lamellar structure detected by XRD. The repeat periodicity of the structure is about 3.6 nm observed by TEM, which is in well accordance with the XRD data (3.16 nm). The selected area electron diffraction (SAED) results indicated that Lα-HA was a polycrystalline structure. The formation of Lα-HA could be explained by a surfactant template.  相似文献   

6.
Recent X-ray diffraction studies on α-quartz (SiO2) by Kingmaet al [1], have shown the occurrence of a reversible, crystalline-to-crystalline, phase transition just prior to amorphization at ≈ 21 GPa. This precursor transition has also been confirmed by our recent molecular dynamics simulation study [2]. In order to investigate the possibility of a similar behaviour in other isostructural compounds, which also undergo pressure induced amorphization, α-GeO2 and α-AlPO4 (berlinite form) were studied using energy dispersive X-ray diffraction. In either of these materials, no such phase transition is detected prior to amorphization. The onset of amorphization and its reversal is found to be time dependent in GeO2.  相似文献   

7.
The magnetite nanoparticles were synthesized in an ethanol–water solution under ultrasonic irradiation from a Fe(OH)2 precipitate. XRD, TEM, TG, IR, VSM and UV/vis absorption spectrum were used to characterize the magnetite nanoparticles. It was found that the formation of magnetite was accelerated in ethanol–water solution in the presence of ultrasonic irradiation, whereas, it was limited in ethanol–water solution under mechanical stirring. The monodispersibility of magnetite particles was improved significantly through the sonochemical synthesis in ethanol–water solution. The magnetic properties were improved for the samples synthesized under ultrasonic irradiation. This would be attributed to high Fe2+ concentration in the magnetite cubic structure.  相似文献   

8.
The effect of ultrasonic irradiation (40 kHz) on the calcium carbonate deposition on bacterial cellulose membranes was investigated using calcium chloride (CaCl2) and sodium carbonate (Na2CO3) as starting reactants. The composite materials containing bacterial cellulose-calcium carbonate were characterized by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and color measurements. The polymorphs of calcium carbonate that were deposited on bacterial cellulose membranes in the presence or in the absence of ultrasonic irradiation were calcite and vaterite. The morphology of the obtained crystals was influenced by the concentration of starting solutions and by the presence of ultrasonic irradiation. In the presence of ultrasonic irradiation the obtained crystals were bigger and in a larger variety of shapes than in the absence of ultrasounds: from cubes of calcite to spherical and flower-like vaterite particles. Bacterial cellulose could be a good matrix for obtaining different types of calcium carbonate crystals.  相似文献   

9.
Li2FeSiO4/C composites were synthesized via a tartaric-acid-assisted sol–gel method with ethanol and ethylene glycol (EG) as mixed solvents. Effects of solvent composition on the physical properties and electrochemical performances of Li2FeSiO4/C were studied. The materials were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The electrochemical performances of Li2FeSiO4/C were evaluated by galvanostatic charge–discharge and electrochemical impedance spectra (EIS) measurements. The results show that the addition of EG to ethanol solvent during preparation has a positive effect on the electrochemical performance of Li2FeSiO4/C. The sample synthesized using EG–ethanol with the volume ratio of 2:7 has the best electrochemical performance. It delivers an initial discharge capacity of 105 mAh g?1 at C/16. AC impendence investigation shows that Li2FeSiO4/C synthesized using the optimal EG/ethanol volume ratio has lower resistance of electrode/electrolyte interface and higher lithium-ion diffusion coefficient than that synthesized using ethanol as solvent.  相似文献   

10.
《Composite Interfaces》2013,20(8):647-660
Copper is well known as a classical transition metal used in heterogeneous catalysis. In this study, copper-loaded apatitic calcium phosphates were prepared using incipient wetness impregnation (IWI) and ionic exchange (IE) methods. The interaction between copper precursor (copper nitrate trihydrate, Cu(NO3)2?3H2O) and apatitic calcium phosphate (CaP) depended strongly on the preparation method and the content of copper-loaded. Using IE, copper(II) cations (Cu2+) were incorporated in the apatitic structure of CaP. The content of copper(II) cations seemed to be limited at about 2.2?wt.%. Calcination at 400?°C had no influence on the solids obtained by the IE method. Using IWI, the deposition of a theoretical copper content of 2?wt.% led to the incorporation of copper(II) cations in the apatitic structure of CaP by IE with Ca2+, despite the low quantity of aqueous solvent used. Therefore the resulting product was similar to that obtained by IE. When the theoretical copper content rose to 20?wt.%, the entire amount of copper precursor molecules were largely deposited, which resulted in the formation of copper oxide particles (CuO) after air calcination at 400?°C. Thermo-mechanical analysis study showed that the presence of copper oxide did not modify the thermal shrinkage of the initial calcium phosphate. On the other hand, thermal shrinkage was much more important in the case of CaP substituted with copper(II) cations.  相似文献   

11.
Impedance spectroscopy measurements and synchrotron X-ray diffraction studies of Sc2(WO4)3 at 400°C have been carried out as a function of pressure up to 4.4 GPa. Ionic conductivity shows normal decrease with increase in pressure up to 2.9 GPa, but then increases at higher pressures. The XRD results show that Sc2(WO4)3 undergoes pressure-induced amorphization at pressures coincident with the reversal in conductivity behavior. The loss of crystal structure at high pressure is consistent with growing evidence of pressure-induced amorphization in negative thermal expansion materials, such as Sc2(WO4)3. The increase in conductivity in the amorphized state is interpreted as the result of an increase in structural entropy and a concomitant reduction of energy barriers for ionic transport.  相似文献   

12.
Titanium and its alloys are widely used for orthopedic and dental implants because of their superior mechanical properties, low modulus, excellent corrosion resistance and good biocompatibility. However, it takes several months for titanium implants and bone tissue to reach integration. Hence, there is growing interest in shortening the process of osseointegration and thereby reducing surgical restrictions. Various surface modifications have been applied to form a bioactive titanium oxide layer on the metal surface, which is known to accelerate osseointegration.The present work shows that titanium dioxide (TiO2) layers formed on titanium substrates by etching in a solution of sodium hydroxide (NaOH) or hydrogen peroxide/phosphoric acid (H3PO4/H2O2, with a volume ratio of 1:1) are highly suitable pre-treatments for apatite-like coating deposition. Using a two-step procedure (etching in an alkaline or acidic solution followed by soaking in Hanks’ medium), biomimetic calcium phosphate coatings were deposited on porous TiO2 layers. The combined effects of surface topography and chemistry on the formation of the calcium phosphate layer are presented. The topography of the TiO2 layers was characterized using HR-SEM and AFM techniques. The nucleation and growth of calcium phosphate (Ca-P) coatings deposited on TiO2 porous layers from Hanks’ solution was investigated using HR-SEM microscopy. AES, XPS and FTIR surface analytical techniques were used to characterize the titanium dioxide layers before and after deposition of the calcium phosphate coatings, as well as after the process of protein adsorption. To evaluate the potential use of such materials for biomedical applications, the adsorption of serum albumin, the most abundant protein in the blood, was studied on such surfaces.  相似文献   

13.
Transparent fused silica (SiO2) microspheres 2.5 μm in diameter were photochemically welded to transparent, flexible silicone rubber ([SiO(CH3)2]n) substrate by 193 nm ArF excimer laser induced photochemical modification of silicone into silicon oxide. Single layer of silica microspheres was easily formed on an adhesive silicone rubber before laser irradiation after dropping of silica microspheres dispersed in ethanol and subsequent tape peeling. The welding rate, the percentage of welded microspheres tested by ultrasonic cleaning with ethanol, was examined by varying the single pulse fluence and irradiation time of ArF excimer laser. The welding layer underneath microsphere, silicon oxide, was also found to emit white light of strong intensity under UV light illumination.  相似文献   

14.
Molybdenum lead phosphate glasses doped with La2O3 of the system xMoO3-5La2O3-50P2O5-(45−x)PbO, with 0≤x≤25 mol%, have been synthesized and studied by FTIR, ultrasonic and differential scanning calorimetry (DSC) in order to investigate the role of MoO3 content on their atomic structure. The constants of elasticity and Debye temperatures of the glasses have been investigated using sound velocity measurements at 4 MHz. According to the IR analysis, the vibrations of the phosphate structural units are shifted towards higher wavenumbers associated with the formation of bridging oxygens. The change in density with MoO3 content reveals that the molybdate units are less dense than the lead units. The observed compositional dependence of the constants of elasticity is interpreted in terms of the effect of MoO3 on the different phosphate bonds. It is assumed that MoO3 plays the role of a former by increasing the ultrasonic velocity and the constants of elasticity of the phosphate glasses.  相似文献   

15.
《Solid State Ionics》1987,24(2):137-146
In agreement with previous work on aluminum and boron phosphates, Ca(H2PO4)2·H2O undergoes dehydration and/or hydrolysis in the solid state under water vapour pressure at 200–600°C. At 5 atm. steam pressure calcium dihydrogen phosphate and Ca2HP3O10 exist up to 300 and 400°C respectively. At 500°C no acid phosphates have been detected. Neutral phosphates such as Ca2P2O7 are suggested as possible stabilizers of the protonic salts. The results are relevant in relation to the synthesis of high temperature stable proton conducting solid electrolytes.  相似文献   

16.
17.
We have studied the high pressure behavior of the α and β-phases of Tb 2(MoO 4)3 using a combination of powder X-ray diffraction and ab initio calculations. The α-Tb 2(MoO 4)3 phase did not undergo any structural phase transition in the pressure range from 0 up to the maximum experimental pressure of 21 GPa. We observed line broadening of the diffraction patterns at pressures above 7 GPa, which may be due to non-hydrostatic conditions. The complete amorphization of the sample was not reached in the pressure range studied, as expected from previous Raman studies. The behavior under pressure of the β-Tb 2(MoO 4)3 phase is similar to that of other rare-earths trimolybdates with the same structure at room temperature. A phase transition was observed at 2 GPa. The new phase, which can be identified as the δ-phase, has never been completely characterized by diffraction studies. A tentative indexation has been performed and good refined cell parameters were obtained. We detect indications of amorphization of the δ-Tb 2(MoO 4)3 phase at 5 GPa.  相似文献   

18.
In this study the potential use of an aqueous two phase system (ATPS) coupled with ultrasound for the extraction of lignans from Schisandra chinensis seeds was evaluated and optimized using response surface methodology (RSM). The main bioactive components, schizandrin (SA), schisantherin A (SAA) and deoxyschizandrin (DSA) were selected as markers. The partitioning behavior of lignans in different salt-types of ATPS was compared. The optimization ATPS of 25% (w/w) (NH4)2SO4 and 19% (w/w) ethanol were selected based on their higher upper phase partitioning coefficient (>74) and the recovery (>93%) for three markers. Using the optimized ATPS solvent, the RMS results showed 20:1 of solvent:solid, 800 W and 61.1 min were the optimal ultrasound assisted extraction conditions, under which 13.10 mg/g SA, 1.87 mg/g SAA and 1.84 mg/g DSA were recovered in the upper phase, whereas the wasted stigmas accumulated in the lower phase. Compared with 80% ethanol (v/v) ultrasonic extraction, similar yields were obtained, but the present method exhibited higher extraction purity for the selective extraction of lignans from S. chinensis seeds.  相似文献   

19.
In this article, calcium nitrate (Ca(NO3)2) and disodium hydrogen phosphate (Na2HPO4) are used as calcium and phosphorous sources to prepare hydroxyapatite nanoparticles by the hydrothermal method. Plate-like nanocrystals of hydroxyapatite are synthesized with the aid of sodium tripolyphosphate. The results show that sodium tripolyphosphate increases the diameters of the hydroxyapatite nanoparticles during the hydrothermal process. When the concentration of sodium tripolyphosphate reaches 0.015 M, the average aspect ratio of those nanoparticles is close to 1. The strong surface adsorption caused by sodium tripolyphosphate may answer for the morphological change of hydroxyapatite crystal.  相似文献   

20.
In order to investigate the influence of solvent polarity on the rate effect of double bonds in reactions that proceed via an extended π‐participation mechanism, the solvolysis rates (kU) of the benzyl chloride derivative 1 and tertiary chloride 2 that have doubly unsaturated side chains were measured in absolute ethanol, 80% v/v. aq. ethanol and 97% wt. aq. trifluoroethanol. The rates of the corresponding saturated analogs 1S and 2S (kS) were measured in 80% aq. ethanol and 97% wt. aq. trifluoroethanol, while those in pure ethanol were calculated according to LFER equation log k = sf (Ef + Nf). In solvents with moderate ionizing power (ethanol and 80% aq. ethanol) the expected rate effects were obtained (kU/kS>1), while in solvent with high ionizing power (2,2,2‐trifluoroethanol) absence of the rate effect was observed (kU/kS≈1), indicating that in the kS process the solvation of the transition state is very important, while in kΔ process the breaking of the C? Cl bond is not appreciably developed in the transition state and the solvent effect is marginal. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号