首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
利用Fe3+引发吡咯(Py)在层状双羟基金属氧化物(LDHs)表面发生氧化反应,形成聚吡咯(PPy)包覆LDHs(LDHs@PPy);以LDHs@PPy和聚己内酯(PCL)为原料,采用溶液浇筑方法制备LDHs@PPy/PCL纳米复合薄膜.研究结果表明,LDHs@PPy对大肠杆菌和金黄色葡萄球菌的抗菌率均达到99.7%,其与基材PCL界面相容性良好,而且在基材中还具有异相成核作用.当LDHs@PPy的质量分数仅为1%时,LDHs@PPy/PCL纳米复合材料的拉伸强度和断裂伸长率分别增加35%和23%,氧气渗透性降低幅度达到56%,对大肠杆菌和金黄色葡萄球菌的抗菌率均超过99.99%,表现出良好的抗菌活性,拓展了层状黏土/生物基高分子复合材料在活性包装领域的应用.  相似文献   

2.
以卤胺化合物为抗菌基团对壳聚糖接枝改性, 并制备成纳米微球, 提高壳聚糖的抗菌性能. 通过核磁共振和紫外光谱对改性壳聚糖进行结构表征; 探讨了改性壳聚糖浓度、 三聚磷酸钠浓度及两者体积比对纳米微球的形成和粒径分布的影响; 测定了纳米微球的抗菌性能. 结果表明, 在改性壳聚糖浓度为4.0 mg/mL, 三聚磷酸钠浓度为2.0 mg/mL时, 形成的纳米微球形态稳定, 粒径分布均匀, 氯化后的纳米微球可在30 min内杀灭107 cfu(cfu为单位体积中的菌落总数)的金黄色葡萄球菌和大肠杆菌, 表现出优异的抗菌性能.  相似文献   

3.
An efficient, novel and convenient method for the synthesis of modified polyacrylonitrile (PAN) with antibacterial property is reported. The modification of PAN was prepared by a nitrile click chemistry reaction with sodium azide (NaN3) and silver nitrate (AgNO3) as catalyst to yield antibacterial polymeric materials with 5-vinyltetrazole units. The results showed that 5-vinyltetrazole units had coordinated with silver ion (Ag+). Through the electrostatic spinning technology, the post-modification PAN nanofibers (PAN–Ag+ nanofibers) were prepared and the fibers were tested for their antimicrobial properties by the bacterial infection experiment. Afterwards, the antibacterial and stable performance of different proportions of silver ions in PAN nanofibers has been compared. The PAN–Ag+ nanofibers are characterized for mechanical and thermomechanical properties, structural analysis, appearance characteristics, as well as the antibacterial properties. And the nanofibers exhibit marvelous chemical stability according to the thermogravimetric analysis. When at 800 °C, the PAN decomposed about 60%, while the decomposition of the PAN–Ag+s was 40%. Based on the bacterial infection experiment, PAN–Ag+ nanofibers’ antibacterial properties were stronger with the increase of silver ions, such as the number of bacteria clone was smaller and the bacteriostatic ring was larger. Hence, with combination of silver ions, the final polymers show strong antimicrobial properties.  相似文献   

4.
层状纳米纤维素膜/PVA复合水凝胶的制备与力学性能研究   总被引:1,自引:0,他引:1  
采用叠层复合与物理相分离的方法制备了层状纳米细菌纤维素(BC)膜/聚乙烯醇( PVA)复合水凝胶.研究了聚乙烯醇的质量百分数、BC膜的复合层数以及制备条件对复合水凝胶力学性能的影响;通过扫描电镜( SEM)观察比较了复合水凝胶中BC膜层与PVA界面结合情况.结果表明,复合水凝胶的力学性能与PVA的质量百分数和BC膜含水...  相似文献   

5.
Nanohybrid membranes based on the silver (Ag) and a poly(vinyl alcohol)/polyethyleneimine (PVA/PEI) blend were prepared by an in-situ reduction method, in which the silver nitrate, PVA and PEI acted as precursor, linker and polyamine reductant, respectively. The objective of the study was to develop and evaluate permeable membranes (PVA/PEI) impregnated with Ag nanoparticulates that can protect against simulants of chemical and biological warfare agents. The physical properties of the PVA/PEI-Ag hybrids were examined using SEM, TEM, TGA, and UV-vis spectroscopy, the results indicated that the Ag was incorporated in the PVA/PEI matrix after impregnation. The Ag content and surface morphology of the PVA/PEI-Ag hybrids depended on the initial concentration of AgNO3. The chemical barrier properties against 2-chloroethyl-ethyl sulfide (CEES) were investigated based on static-diffusion method with gas chromatograph (GC). The antibacterial effects of the PVA/PEI-Ag hybrids were assessed by the zone of inhibition, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and plate-counting methods. The results of this study showed that PVA/PEI-Ag hybrids that act against simulants of chemical and biological weapons while retaining their ability to transmit moisture vapor could be obtained.  相似文献   

6.
Antibacterial wound dressing can benefit the wound healing by preventing bacterial infection, especially for the electrospun ones due to their porous structures and easily loading antibacterial drugs. However, it is challenging to apply the antibacterial electrospun wound dressing to covering the wound conveniently and safely. Here, we presented one step fabrication and application of antibacterial electrospun zein/cinnamon oil wound dressing via a handheld electrospinning setup. The prepared zein/cinnamon oil wound dressing showed gas permeability of (76.1±5.45) mm/s, hydrophilicity with zero body fluid contact angle, swelling stability after 24 h as well as antibacterial zones over 5 cm against both E. coli and S. aureus bacteria. Moreover, in situ electrospinning process can deposit the electrospun zein/cinnamon oil fibers directly onto the wound, meantime forming a wound dressing. The mice cut-wound model experiment demonstrated that the one step in situ fabrication and application of zein/cinnamon oil wound dressing could nearly heal the wound within 11 d.  相似文献   

7.
近年来,二维(2D)金属-有机框架(MOF)纳米复合材料被广泛的应用于生物医学领域,尤其是在抗菌方面。在此,我们通过光照诱导还银离子成功在二维MOF纳米片上生长银纳米粒子,得到了一种银纳米粒子(Ag NPs)修饰的二维Zr-Fc-MOF (MOF-Ag)纳米片,并将其用于光热增强Ag+释放抗菌治疗。通过水热法和超声处理合成MOF纳米片,然后通过原位光辐照诱导还原在MOF纳米片上生长Ag NPs。系列表征结果表明Ag NPs成功负载到MOF纳米片上。聚乙烯吡咯烷酮(PVP)的修饰不仅可以增强MOF-Ag在溶液中的稳定性,还可以增强它的生物相容性。在近红外激光(NIR)照射下,MOF纳米片可以在短时间升温,而温度的升高可以加速Ag NPs在溶液中氧化为银离子。通过细菌生长曲线、菌落相对数和细菌形态变化等实验表明PVP@MOF-Ag纳米片具有优异的广谱杀菌性能。此外,2D MOF纳米片良好的光热性能不仅可以增强Ag+的释放,还可以增强细胞膜的通透性,随后进入细菌中的Ag+可以诱导内源性活性氧的产生,从而引发细菌的氧化应激,实现高效抗菌。基于良好的体外抗菌性能,进一步将PVP@MOF-Ag纳米片用于小鼠伤口愈合,在此期间PVP@MOF-Ag纳米片表现出良好的治疗效果和生物安全性。我们的研究结果表明,PVP@MOF-Ag纳米片可以作为光热增强Ag+释放抗菌治疗和伤口愈合的有效平台。  相似文献   

8.
大豆分离蛋白/聚乙烯醇的电纺研究   总被引:1,自引:0,他引:1  
对大豆分离蛋白(SPI)/聚乙烯醇(PVA)的电纺进行了研究, 讨论了溶液性质和甘油的加入对SPI/PVA电纺纤维形貌的影响, 并对SPI/PVA电纺膜进行了成分分析和力学性能表征. 结果表明, 加入甘油可以提高SPI/PVA的可电纺性, 同时使SPI/PVA电纺膜的拉伸强度从不含甘油的(5.17±0.62) MPa下降到含有甘油的(1.67±0.21) MPa, 而伸长率呈增加趋势.  相似文献   

9.
The main core of wound treatment is cell growth and anti-infection. To accelerate the proliferation of fibroblasts in the wound and prevent wound infections, various strategies have been tried. It remains a challenge to obtain good cell proliferation and antibacterial effects. Here, human hair kerateine (HHK)/poly(ethylene oxide) (PEO)/poly(vinyl alcohol) (PVA) nanofibers were prepared using cysteine-rich HHK, and then, silver nanoparticles (AgNPs) were in situ anchored in the sulfur-containing amino acid residues of HHK. After the ultrasonic degradation test, HHK/PEO/PVA nanofibrous mats treated with 0.005-M silver nitrate were selected due to their relatively complete structures. It was observed by TEM-EDS that the sulfur-containing amino acids in HHK were the main anchor points of AgNPs. The results of FTIR, XRD and the thermal analysis suggested that the hydrogen bonds between PEO and PVA were broken by HHK and, further, by AgNPs. AgNPs could act as a catalyst to promote the thermal degradation reaction of PVA, PEO and HHK, which was beneficial for silver recycling and medical waste treatment. The antibacterial properties of AgNP-HHK/PEO/PVA nanofibers were examined by the disk diffusion method, and it was observed that they had potential antibacterial capability against Gram-positive bacteria, Gram-negative bacteria and fungi. In addition, HHK in the nanofibrous mats significantly improved the cell proliferation of NIH3T3 cells. These results illustrated that the AgNP-HHK/PEO/PVA nanofibrous mats exhibited excellent antibacterial activity and the ability to promote the proliferation of fibroblasts, reaching our target applications.  相似文献   

10.
通过伯胺引发肌氨酸-N-硫代羧酸酐(Sar-NTA)和N-烯丙基甘氨酸-N-硫代羧酸酐(NGA-NTA)的开环聚合制备了一种三嵌段聚类肽, 即聚(N-烯丙基甘氨酸)-b-聚肌氨酸-b-聚(N-烯丙基甘氨酸)(PNAG-b-PSar-b-PNAG, 简称PASA); 然后通过PASA侧链上的烯丙基与3,6-二氧杂-1,8-辛烷二硫醇之间的巯-烯“点击”化学反应合成了不同肌氨酸(Sar)摩尔分数的聚类肽水凝胶(HG). 巯-烯“点击”反应生成的大量硫醚基团可进一步与环氧化合物反应, 在水凝胶的网络骨架中生成硫正离子, 从而获得具有固有抗菌能力的含硫正离子聚类肽水凝胶(S+HG). S+HG具有优异的吸水能力, 能够在1 min内达到吸水平衡, 饱和溶胀率高达2024%. S+HG内部由大量规则的连续海绵孔状结构组成, 能够承受一定的剪切、 摩擦及挤压等外界应力. S+HG具有强效的广谱抗菌能力, 对革兰氏阴性的大肠杆菌(E. coli)和革兰氏阳性的金黄色葡萄球菌(S. aureus)的抗菌率都在99.99%以上.  相似文献   

11.
以氯化铝和异丙醇铝为原料, 水和乙醇为溶剂, 通过溶胶凝胶结合静电纺丝法制备了柔性γ-Al2O3纳米纤维膜. 表征了纤维膜的形貌和机械性质, 并研究了纤维膜的形成过程. 组成纤维膜的纤维直径均匀, 平均直径188 nm, 纤维由粒径在15~30 nm的纳米颗粒组成且表面光滑. 制备的纤维膜具有较好的柔性及抗拉强度(1.01 MPa).  相似文献   

12.
Bacterial infection is a major threat to human health, and can cause several diseases including gastroenteritis, influenza, tetanus, and tuberculosis. As conventional antibiotic treatment may cause various undesirable effects such as stomach disorder and bacterial resistance, it is necessary to improve the antibacterial efficiency of antibiotics. Here, we synthesized a peptide-based copolymer, poly(ε-caprolactone)-block-poly(glutamic acid)-block-poly(lysine-stat-phenylalanine)[PCL34-b-PGA30-b-P(Lys16-stat-Phe12)] by ring-opening polymerization (ROP) of ε-caprolactone and amino acid N-carboxyanhydride (NCA). Successful synthesis of the copolymer was verified by proton nuclear magnetic resonance and size exclusion chromatography. This copolymer can self-assemble into negatively charged micelles (-26.7 mV) under alkaline conditions by solvent switch method. The micelle structure was confirmed by transmission electron microscopy and dynamic light scattering, and revealed to have a diameter of ~42 nm. Antibiotics were loaded into micelles during the self-assembly process, and cell viability assay was conducted to evaluate its cytotoxicity with and without tobramycin. No obvious cytotoxicity was observed for both micelles when the concentration was lower than 300 μg·mL-1. The antibiotic-loaded micelles demonstrated very low minimum inhibitory concentrations (MICs) against both Gram-negative Escherichia coli (E. coli) (7.8 μg·mL-1) and Gram-positive Staphylococcus aureus (S. aureus) (18.2 μg·mL-1), while the MICs of free tobramycin were 3.9 and 1.0 μg·mL-1, respectively. The drug-loading content and efficiency of the micelles were 5.2% and 24.3%, respectively. Therefore, the MICs of the loaded tobramycin against E. coli and S. aureus were 0.4 and 0.9 μg·mL-1, respectively, suggesting that the micelle could enhance the antibacterial activity of antibiotics. Tobramycin-loaded micelles demonstrated a sustained release characteristic, with 85% of the antibiotics released after 8 h. In bacteria-induced acidic microenvironment, the coil conformation of PGA blocks transforms and PGA blocks shrink toward the micelle core. Concomitantly, the carboxyl side chains are protonated in an acidic environment, increasing the hydrophobicity of this micelle. Antibiotics will be captured when reaching the outer core to slow down the releasing process. Furthermore, the poly(lysine-stat-phenylalanine) [P(Lys-stat-Phe)] coronas with broad spectrum intrinsic antibacterial activity can penetrate the bacterial cell membrane, leading to leakage of the cellular contents of the bacteria and ultimately their death. Due to the sustained release property of micelle and the intrinsic activity of the antibacterial peptide segments, this micelle can greatly enhance the antibacterial activity of antibiotics. Overall, this antibiotic-loaded micelle provides a novel approach for significantly reducing the antibiotics dosage and avoiding the associated health risks.  相似文献   

13.
Two kinds of micro/nano sized fibrils based on cellulose (MFC) and polyvinyl alcohol (PVA) were used as reinforcer for epoxy resin (EP) with different contents in the range from 0 to 0.3 wt %. PVA nanofibers with diameter about 40–80 nm were fabricated by electrospinning technique. The analysis of mechanical properties showed that by both adding MFC and PVA to EP the fracture toughness was increased. The SEM results showed that micro/nano sized fibers dispersed throughout epoxy resin, prevented and changed the path of crack growth.  相似文献   

14.
Silver nanoparticle embedded poly(vinyl alcohol)-poly(methyl methacrylate) nanofibers, ca. 30 nm in diameter and ca. 60 microm in length, were fabricated by one-step radical-mediated dispersion polymerization using 2,2'-azobis(isobutyronitrile) to reduce the silver ions. In this methodology, PVA acted both as a gelator to form the nanofibers and as a stabilizer to protect the silver clusters from sintering.  相似文献   

15.
以稀土(Re3+)和儿茶素(C)为原料,由液相合成法制备了3种(La3+-C、Gd3+-C、Er3+-C)配合物,结合傅里叶变换红外光谱、紫外光谱、X射线光电子能谱及配位数测定对配合物结构进行表征,确定了配合物的配位数为8。并采用牛津杯法、最小抑菌浓度(MIC)及最小杀菌浓度(MBC)等三种方法测定了Re3+-C对大肠杆菌、金黄色葡萄球菌、绿脓杆菌、沙门氏菌4种食源性细菌的抗菌性能。结果表明,这3种稀土配合物对各试验菌株均表现不同程度的抑制能力,相较Re3+和C而言,Re3+-C配合物的抑菌性能均有显著的提高。Re3+-C的抑菌活性顺序为:Gd3+-C > La3+-C > Er3+-C,其中Gd3+-C对4种细菌的MIC值分别为:1.550、0.097、0.780、1.550 μmol·mL−1,MBC值分别为3.100、0.194、1.550、1.550 μmol·mL−1,Gd3+-C对金黄色葡萄球菌表现出最佳的抑菌和杀菌能力。  相似文献   

16.
采用静电纺丝法制备了磷钼酸/聚苯乙烯(PS)/聚乙烯醇(PVA)复合纤维,并将其模压成膜.利用红外光谱(IR)、扫描电子显微镜(SEM)及X射线能谱(EDX)等对复合纤维及其膜的结构与形貌进行表征,并对复合纤维膜的光催化性能、力学性能及在水中稳定性进行测试.结果表明,在复合纤维中磷钼酸的Keggin结构得到保持.PS与PVA质量比为1∶1时,复合纤维形貌最佳,表面光滑,直径较小且分布均匀,复合纤维的直径随着磷钼酸含量的增加而减小.将磷钼酸固载于复合纤维膜上比直接使用具有更高的光催化活性,光照25 min后接近98%的甲基橙降解;复合纤维膜易于回收再利用,5次重复使用后,复合纤维膜没有破损,磷钼酸损失较少,光催化性能无明显下降.复合纤维膜的强度随磷钼酸含量的增加先增大后减小,韧性随PVA含量的增加而增大,随磷钼酸含量的增加而减小.  相似文献   

17.
欧阳君君  周莉 《应用化学》2012,29(9):995-999
以NaCl为致孔剂,采用溶盐致孔法制备了多孔β-磷酸三钙/壳聚糖/聚乙烯醇(β-TCP/CS/PVA)复合水凝胶材料。 通过对比其含水率、溶胀比、拉伸强度、X射线衍射谱图、SEM和热重分析曲线,探讨了在相同环境下壳聚糖与β-磷酸三钙(β-TCP)的不同用量对聚乙烯醇(PVA)的结晶度以及对材料性能的影响。 此复合材料含水率为70%~76%。 当壳聚糖与β-TCP的质量比为2∶8时,复合材料的拉伸强度为0.56 MPa,断裂伸长率达到370%,其较好的力学性能,足以承受正常人眼压,可用作人工角膜周边支架材料。  相似文献   

18.
研究了一种pH可逆激活型不对称菁(Acy)的光动力杀菌性能。 结果表明,Acy在细菌所处弱酸性微环境和808 nm激光照射下可特异性激活产生单线态氧,对大肠杆菌和金黄色葡萄球菌均展现出了很好的光动力杀菌效果,而在正常体液条件下无明显的抗菌作用。 这种可特异性激活的光动力特性使得Acy避免了传统光敏剂因缺乏细菌特应性而产生的非特异性损伤,在细菌感染的特异性治疗方面展现出了良好的应用前景。  相似文献   

19.
Preparation of electrospun chitosan/poly(vinyl alcohol) membranes   总被引:1,自引:0,他引:1  
Electrospinning of chitosan from its solutions in 2% aqueous acetic acid was studied by adding poly(vinyl alcohol) (PVA) as a “guest” polymer. Properties of the chitosan/PVA solutions including viscosity, conductivity, and surface tension were measured, and effects of the polymer concentration, chitosan/PVA mass ratio and processing parameters (applied voltage, flow rate, capillary-to-collector distance) on the electrospinnability of chitosan/PVA were investigated. Analyses of scanning electron micrographs and transmission electron micrographs suggested that the chitosan/PVA ultrafine fibers were often obtained along with beads, and chitosan was located in the elctrospun fibers as well as in the beads. Uniform chitosan/PVA fibers with an average diameter of 99 ± 21 nm could be prepared from a 7% chitosan/PVA solution in 40:60 mass ratio. Results of Fourier transform infrared spectroscopy and X-ray diffraction demonstrated that there were possible hydrogen bonds between chitosan and PVA molecules, which could weaken the strong interaction in chitosan itself and facilitate chitosan/PVA electrospinnability. The electrospun chitosan/PVA membranes showed higher water uptake and would have potential applications in wound dressings.  相似文献   

20.
Submicron fibers of medium-molecular-weight poly(vinyl alcohol) (MMW-PVA), high-molecular-weight poly(vinyl alcohol) (HMW-PVA), and montmorillonite clay (MMT) in aqueous solutions were prepared by electrospinning technique. The effect of HMW-PVA and MMT on the morphology and mechanical properties of the MMW-PVA/HMW-PVA/MMT nanofibers were investigated for the first time. Scanning electron microscopy, viscometer, tensile strength testing machine, thermal gravimetric analyzer (TGA), and transmission electron microscopy (TEM) were utilized to characterize the PVA/MMT nanofibers morphology and properties. The MMW-PVA/HMW-PVA ratios and MMT concentration played important roles in nanofiber's properties. TEM data demonstrated that exfoliated MMT layers were well distributed within nanofibers. It was also found that the mechanical property and thermal stability were increased with HMW-PVA and MMT contents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号