首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Macroscopic and microscopic dissipative structural patterns are formed in the course of drying an aqueous solution of n-dodecyltrimethylammonium chloride on a cover glass. Broad ring patterns of the hill accumulate with detergent molecules to form around the outside edges of the film solution in the macroscopic scale. The drying time (T) and the pattern area (S) decrease and increase respectively, as the detergent concentration increases. T decreases significantly as the ethanol fraction increases in the aqueous ethanol mixtures, whereas S increases as the fraction increases. Both T and S decrease as the concentrations of KCl, CaCl2 or LaCl3 increase. Cross-, branch-, and arc-like microscopic patterns are observed in the separated block regions. The convection of water and detergents at different rates under gravity and the translational and rotational Brownian movement of the latter are important for macroscopic pattern formation. Microscopic patterns are determined by the translational Brownian diffusion of the detergent molecules and the electrostatic and the hydrophobic interactions between the detergents and/or between the detergent and cell wall in the course of the solidification.  相似文献   

2.
Macroscopic and microscopic dissipative structural patterns form in the course of drying a series of aqueous solutions of polyoxyethylenealkyl ethers. The shift from the single round hill with accumulated surfactant molecules to the broad ring patterns of the hill in a macroscopic scale occurs as the HLB (hydrophile-liophile balance) of the surfactant molecules increases. The patterns correlate intimately with the HLB values of the surfactants. Microscopic patterns of small blocks, starlike patterns, and branched strings are formed. The size and shape of the surfactant molecules themselves influence the drying patterns in part. The pattern area and the time to dryness have been discussed as a function of surfactant concentration and HLB of the surfactants. The convection flow of water accompanying the surfactant molecules, the change in the contact angles at the drying frontier between solution and substrate in the course of dryness, and interactions among the surfactants and substrate are important for the macroscopic pattern formation. Microscopic patterns are determined in part by the shape and size of the molecules, translational Brownian movement of the surfactant molecules, and the electrostatic and hydrophobic interactions between surfactants and/or between the surfactant and substrate in the course of solidification.  相似文献   

3.
Amphiphilic aroma molecules, representatives of fragrance molecules, are introduced as dynamic volatile surfactants. Surface tension of their aqueous solutions proves to be a sensitive and revealing quantity, used for assessment of the adsorption-evaporation behavior both under equilibrium conditions and in regimes of no instantaneous equilibrium. Such volatile amphiphiles are characterized by fast adsorption from bulk solution at an air-water interface, on a timescale of tens of microseconds, and exhibit synergetic effect in mixtures with conventional micellar-forming surfactants. Their ability to evaporate from the interface on a time scale of minutes suggests their applications as “temporal” dynamic cosurfactants in technologies involving fast formation of new surfaces. Current challenges concern evaluation of specific material parameters of volatile aroma surfactants in order to enable their selection for targeted applications.  相似文献   

4.
The excited state of pyrene observed in fluorescence and pulsed laser techniques is used to show that pyrene is solubilized in the polymer coil of aqueous solution of polymethacrylic acid (PMA) at pH < 4–5. This leads to a decreased access of molecules such as I?, Tl+, CH3NO2, and O2 to excited pyrene in the polymer coil. The protection of the excited state by solubilization in the polymer is sufficient to enable 3-bromopyrene phosphorescence to be observed at room temperature in these systems. Increasing the pH of the system uncoils the polymer and leads to increased accessibility of excited pyrene to CH3NO2; eventually, at pH >5, the pyrene is ejected into the aqueous phase of the system. In the presence of micellar solutions of surfactants increasing pH transports the pyrene from the polymer to the micellar aggregates. These fluorescence techniques are used to investigate the kinetics of expansion of the polymer coil. The system is suggested as a suitable model for the interaction of pyrene with biopolymers such as DNA.  相似文献   

5.
Macroscopic and microscopic dissipative structural patterns formed in the course of drying a series of poly (ethylene glycol) (PEG) having molecular weights ranging from 1,000 to 2×106 in aqueous solution have been studied on a cover glass. The broad ring patterns of the hill accumulated with the polymers are formed irrespective of the molecular weights of PEG molecules. The single round hills are formed also in the center in the macroscopic scale, when the molecular weight is large. The characteristic convection flow of the polymers and the interactions among the polymers and substrate are important for the macroscopic pattern formation. Cross-like fractal patterns are observed, especially for the diluted solutions in the microscopic scale. These patterns are determined mainly by the electrostatic and polar interactions between the polymers and/or between the polymer and the substrate in the course of solidification. Interestingly, these microscopic patterns are reflected based on the shape and size of the PEG polymers.  相似文献   

6.
 The surfactant effect on the lower critical solution temperature (LCST) of thermosensitive poly(organophosphazenes) with methoxy-poly(ethylene glycol) and amino acid esters as side groups was examined in terms of molecular interactions between the polyphosphazenes and surfactants including various anionic, cationic, and nonionic surfactants in aqueous solution. Most of the anionic and cationic surfactants increased the LCST of the polymers: the LCST increased more sharply with increasing length and hydrophobicity of the hydrophobic part of the surfactant molecule. The ΔLCSTs (T 0.03M − T 0M), the change in the LCST by addition of 0 and 0.03 M sodium dodecyl sulfate (SDS), were found to be 7.0 and 14.5 °C for the polymers bearing ethyl esters of glycine and aspartic acid, respectively. The LCST increase of poly(organophosphazene) having a more hydrophobic aspartic acid ethyl ester was 2 times larger compared with that of the polymer having glycine ethyl ester as a side group. The binding behavior of SDS to the polymer bearing glycine ethyl ester as a hydrophobic group was explained from the results of titration of the polymer solutions containing SDS with tetrapropylammonium bromide. Graphic models for the molecular interactions of polymer/surfactant and polymer/surfactant/salt in aqueous solutions were proposed. Received: 17 February 2000/Accepted: 25 April 2000  相似文献   

7.
In this study, various surfactants were added to control the gelation time of silk fibroin (SF) aqueous solution. The gelation behaviors of SF aqueous solution in the presence of surfactant were investigated with attenuated total reflectance infrared, SEM, and a viscometer. When surfactants other than chitooligosaccharide were added into an SF aqueous solution, the gelation time of the solution was decreased under the fixed conditions. Particularly, anionic surfactant was found to be more effective than non-ionic and cationic surfactants in accelerating the gelation of SF. In addition, the conformational changes of SF hydrogel with or without surfactant were investigated in a time-resolved manner using infrared spectroscopy. Conformational transitions of SF nanofibers from random coil to β-sheet forms were strongly dependent on the inherent properties of surfactant, and on the different interactions between surfactant and SF molecules in aqueous solution. This approach to controlling the gelation of SF aqueous solution by the surfactant, and to monitoring their conformational changes on a real-time scale, may be critical in the design and tailoring of SF hydrogels useful for biomedical applications.  相似文献   

8.
Polydimethylsiloxane-poly(methacrylic acid—hydroxyethyl methacrylate) interpenetrating polymer networks (PDMS-P(MAA–HEMA) IPN) were formulated and polymerized simultaneously from bicontinuous microemulsion templates. Microemulsions containing reactive silicone oils and MAA/HEMA in aqueous solution were stabilized with silicone surfactants, and were then reacted at 50 °C for 3 h under an N2 atmosphere. The formation of bicontinuous morphology was confirmed by laser scanning confocal microscopy, reversible swelling behavior, differential scanning calorimetry, texture analysis, and permeability to vitamin B12 in aqueous solution. Incorporating polymerizable surfactants into the microemulsion aided in stabilizing the initial microemulsion structure during polymerization, yielding a more uniform IPN morphology with domain sizes of <200 nm at equilibrium swelling. The process developed here demonstrates a simple, single-step polymerization approach to forming IPNs from low viscosity microemulsion templates, and could potentially be extended to a variety of hydrophilic and hydrophobic monomers.  相似文献   

9.
Gemini surfactants are constructed by two hydrophobic chains and two polar/ionic head groups covalently connected by a spacer group at the level of the head groups. Gemini surfactants possess unique structural variations and display special aggregate transitions. Their aggregation ability and aggregate structures can be more effectively adjusted through changing their molecular structures compared with the corresponding monomeric surfactants. Moreover, gemini surfactants exhibit special and useful properties while interacting with polymers and biomacromolecules. Their strong self-aggregation ability can be applied to effectively influence the aggregation behavior of both polymers and biomacromolecules. This short review is focused on the performances of gemini surfactants in aqueous solutions investigated in the last few years, and summarizes the effects of molecular structures on aggregation behavior of gemini surfactants in aqueous solution as well as the interaction of gemini surfactants with polymers and biomacromolecules respectively.  相似文献   

10.
Dissolution of cellulose is the key challenge in its applications. It has been discovered that spruce cellulose with high molecular weight (4.10 × 105 g mol?1) can be dissolved in 64 wt% H2SO4 aqueous solution at low temperature within 2 min, and the cellulose concentration in solution can reach as high as 5 % (w/v). FT-IR spectra and XRD spectra proved that it is a direct solvent for cellulose rather than a derivative aqueous solution system. The cold H2SO4 aqueous solution broke the hydrogen bonds among cellulose molecules and the low temperature dramatically slowed down the hydrolysis, which led to the dissolution of cellulose. The resultant cellulose solution was relatively stable, and the molecular weight of cellulose only slightly decreased after storage at ?20 °C for 1 h. Due to the high molecular weight of cellulose, cellulose solution could form regenerated films with good mechanical properties and transparency at low concentration (2 % w/v). This work has not only provided the new evidence of cellulose dissolution which facilitated the development of cellulose solvent, but also suggested a convenient way to directly transfer cellulose with high molecular weight into materials without structure modifications.  相似文献   

11.
The molecular dynamics, organization, and phase state of aqueous solutions of new long-chain cationic surfactants with saturated hydrocarbon radicals (from C16 to C22) containing one or two hydroxyl groups in their polar heads are studied by the spin-probe EPR spectroscopy. In the region of micellar solutions, local mobility of surfactant molecules slightly changes with an increase in the length of hydrocarbon radical, whereas the order parameter of micelles increases notably. The addition of two hydroxyl groups to the polar part of long-chain (C 22) surfactant molecule considerably decreases local mobility and increases the ordering of micellar system compared to the micelles of analogous surfactant with one hydroxyl group. Phase transition from micellar to a solid state is observed in this system with a decrease in temperature. The addition of KCl to aqueous surfactant solution lowers the local mobility, increases the order parameter of micelles, and can cause changes in the phase state of a system. In the presence of salt, the correlation time of probe rotation and its order parameter depend on surfactant concentration. Apparently, this is explained by changes in the shape of micelles upon variations in surfactant concentration.  相似文献   

12.
The colloidochemical properties of new cationic surfactants synthesized from fatty acids of palm oil and diethylenetriamine are first studied. It is found that, at solution pH below 6.0, the examined surfactants exist mainly as salts formed from protonated surfactant molecules and residues of strong acids, e.g., hydrochloric acid. In the pH range above 7.0, the protonated and nonprotonated forms of the surfactants are at equilibrium, which shifts to the nonprotonated form with an increase in pH. The analysis of interfacial tension isotherms shows that the minimum values of the interfacial tension are achieved at pH 7.0 when the concentrations of the protonated and nonprotonated forms of surfactant molecules are equal. New cationic surfactants are used as emulsifiers in emulsion polymerization of styrene. It is found that stable polystyrene latexes with narrow particle size distributions and high positive ζ potentials (as high as +68.4 mV) can be obtained at styrene concentration in an initial emulsion of 25 vol % and surfactant concentration in an aqueous phase of 2 wt %. A hydrogen peroxide-iron(II) salt redox system is used as an initiator of polymerization at component concentrations equal to 5 and 0.05 wt % of the monomer, respectively.  相似文献   

13.
The quantification of binding properties of ions, surfactants, biopolymers, and other macromolecules to nanometer‐scale surfaces is often difficult experimentally and a recurring challenge in molecular simulation. A simple and computationally efficient method is introduced to compute quantitatively the energy of adsorption of solute molecules on a given surface. Highly accurate summation of Coulomb energies as well as precise control of temperature and pressure is required to extract the small energy differences in complex environments characterized by a large total energy. The method involves the simulation of four systems, the surface‐solute–solvent system, the solute–solvent system, the solvent system, and the surface‐solvent system under consideration of equal molecular volumes of each component under NVT conditions using standard molecular dynamics or Monte Carlo algorithms. Particularly in chemically detailed systems including thousands of explicit solvent molecules and specific concentrations of ions and organic solutes, the method takes into account the effect of complex nonbond interactions and rotational isomeric states on the adsorption behavior on surfaces. As a numerical example, the adsorption of a dodecapeptide on the Au {111} and mica {001} surfaces is described in aqueous solution. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

14.
利用座滴法研究了阳离子表面活性剂十六烷基醚羟丙基季铵盐(C16PC)、十六烷基聚氧乙烯醚羟丙基季铵盐(C16(EO)3PC)和两性离子表面活性剂十六烷基醚羟丙基羧酸甜菜碱(C16PB)、十六烷基聚氧乙烯醚羟丙基羧酸甜菜碱(C16(EO)3PB)溶液在聚甲基丙烯酸甲酯(PMMA)表面上的润湿性质, 考察了表面活性剂类型及浓度对接触角的影响趋势. 研究发现: 低浓度条件下表面活性剂分子可能以平躺的方式吸附到固体界面, 且亲水基团靠近固体界面, PMMA表面被轻微疏水化; 在高浓度时则通过Lifshitz-van der Waals 作用吸附, 亲水基团在外, PMMA表面被亲水改性. 聚氧乙烯基团(EO基团)的引入对阳离子表面活性剂的接触角影响不大; 而含有聚氧乙烯基团的两性离子表面活性剂在PMMA界面上以类似半胶束的聚集体吸附, 大幅度降低接触角.  相似文献   

15.
We have studied the rheology and structure of a mixed long polyoxyethylene chain phytosterol (PhyEO30) and monoglyceride (monolaurin (ML) or monopalmitin (MP)) surfactants in an aqueous system. Both ML and MP are insoluble in 10 wt.% PhyEO30 solution at normal room temperature, but their solubility is found to increase with the rise of temperature and an isotropic solution is formed at higher temperature. A maximum viscosity as a function of temperature appears as ML or MP is solubilized in the micellar solution of PhyEO30. With increasing temperature, viscosity increases rapidly for higher monoglyceride content and forms viscoelastic solution. The oscillatory rheological behavior of the viscoelastic solution can be described by Maxwell model at low-frequency region, which is the typical pattern of entangled wormlike micelles. Upon successive increase in temperature, the viscosity decreases and ultimately a phase separation occurs. Small-angle X-ray scattering measurements were performed to provide a supportive structural evidence for the rheological data.  相似文献   

16.
Photophysical and solution properties of pyrene-labeled poly(3-dimethyl(methylmethacryloyl ethyl) ammonium propane sulfonate), poly(DMAPS/Py), were studied in terms of fluorescence emission measurement. The IE/IM was shown as a function of polymer concentration in deionized water. IE/IM value decreases with an increase in the salt concentration. The addition of surfactants to the aqueous solution of poly(DMAPS/Py) can either induce the mixed micelle of intra-polymer and its surrounding surfactants and/or mixed micelle of inter-polymers and their surrounding surfactants. Models of interactions between poly(DMAPS/Py) and surfactant or divalent salt in aqueous solution are proposed.  相似文献   

17.
Foam fluids are widely used in petroleum engineering, but long-standing foam stability problems have limited the effectiveness of their use. The study explores the synergistic effects and influencing factors of SiO2 nanoparticles (SiO2-NPs) with different wettability properties and three different surfactants. The paper investigates the foaming performance of different types of surfactants and analyzes and compares the stability of foam after adding hydrophilic and hydrophobic SiO2-NPs from macroscopic as well as microscopic perspectives, and the effects of temperature and inorganic salts on the stability of mixed solutions. The experimental results show that: 1) hydrophilic nanoparticles can significantly enhance the foam stability of amphoteric surfactants, with a small increase in the foam stability of anionic and cationic surfactants; 2) The concentration of nanoparticles did not have a significant effect on the stability of the cationic surfactants and this conclusion was verified in the experimental results of the surface tension measured below;3) The cationic surfactants showed better temperature resistance at temperatures of 50–90 °C. Both amphoteric surfactant solutions with the addition of hydrophilic SiO2-NPs or hydrophobic SiO2-NPs significantly improved the temperature resistance of the foam at high temperatures. The anionic surfactant solution with hydrophobic SiO2-NPs did not enhance the solution temperature resistance; 4) The surface tension of the surfactant solution gradually increases with increasing concentration of hydrophilic or hydrophobic SiO2-NPs and then levels off; 5) the hydrophilic SiO2-NPs had a significant effect on the salt tolerance of the anionic and amphoteric surfactant solutions. The salt tolerance of cationic surfactant solutions with hydrophobic SiO2-NPs was better than that of surfactants with hydrophilic SiO2-NPs.  相似文献   

18.
Erwinia (E) gum, an extracellular polysaccharide, is composed of fucose, galatose, glucose andglucuronic acid. Its viscosity behavior was investigated by a low-shear-rate multiball viscometer and arotational viscometer. Its weight-average molecular weight M_w and intrinsic viscosity [η] in 0.2 mol/L NaClaqueous solution were measured by light scattering method at 35℃and viscometry at 25℃and found to be1.06×10~6 g/mol and 1050 mL/g, respectively, and its aggregates in aqueous solution were proved by gelpermeation chromatography (GPC). These results indicated that E gum in water has exceedingly highviscosity and exhibits Binham fluid behavior, owing to its aggregation. The viscosity of E gum decreasedwith increasing temperature, and the turning point appeared at 38℃for dilute solution and 80℃forconcentrated solution suggesting that the aggregates of E gum in water started to disaggregate under thesetemperatures. In addition, the aggregates can be disrupted by adding either acid or base. The experimentalresults indicated that the E gum is a good thickening agent, and its fluid behavior is similar to xanthan.  相似文献   

19.
Technomimetic molecules are molecules designed to imitate macroscopic objects at the molecular level, also transposing the motions that these objects are able to undergo. This article focuses on technomimetic molecules with rotary motions, including gears, wheelbarrows and motors. Following the bottom-up approach the synthesis of technomimetic molecules grants access to the study of mechanical properties at the molecular level. These molecules are designed to operate as single molecules on surfaces under the control of the tip of a scanning tunneling microscope or atomic force microscope.  相似文献   

20.
The controlled secondary self‐assembly of amphiphilic molecules in solution is theoretically and practically significant in amphiphilic molecular applications. An amphiphilic β‐cyclodextrin (β‐CD) dimer, namely LA‐(CD)2, has been synthesized, wherein one lithocholic acid (LA) unit is hydrophobic and two β‐CD units are hydrophilic. In an aqueous solution at room temperature, LA‐(CD)2 self‐assembles into spherical micelles without ultrasonication. The primary micelles dissociates and then secondarily form self‐assemblies with branched structures under ultrasonication. The branched aggregates revert to primary micelles at high temperature. The ultrasound‐driven secondary self‐assembly is confirmed by transmission electron microscopy, dynamic light scattering, 1H NMR spectroscopy, and Cu2+‐responsive experiments. Furthermore, 2D NOESY NMR and UV/Vis spectroscopy results indicate that the formation of the primary micelles is driven by hydrophilic–hydrophobic interactions, whereas host–guest interactions promote the formation of the secondary assemblies. Additionally, ultrasonication is shown to be able to effectively destroy the primary hydrophilic–hydrophobic balances while enhancing the host–guest interaction between the LA and β‐CD moieties at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号