首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
The effects of ultrasound on the molecular weight of apple pectin were investigated. The structure and rheological properties of the degradation products were also tentatively identified by High Performance Liquid Chromatography–Photodiode Array Detector (HPLC–PAD), Infrared spectroscopy (IR), Nuclear Magnetic Resonance spectroscopy (NMR) and Rheometer. The results indicated that the weight-average molecular weight of apple pectin decreased obviously after ultrasound treatment. The molecular weight of degradation products had a uniform and narrow distribution. Ultrasound intensity and temperature play an important role in the degradation reaction. Degradation kinetics model of apple pectin fitted to 1/Mt ? 1/M0 = kt from 5 to 45 °C. The degree of methylation of apple pectin reduced according to IR analysis when ultrasound was applied. Ultrasound treatment could not alter the primary structure of apple pectin according to the results determined by HPLC, IR and NMR. Meanwhile, the viscosity of apple pectin was 103 times as large as that of ultrasound-treated apple pectin. The ultrasound-treated apple pectin showed predominantly viscous responses (G′ < G″) over the same frequency range. The results suggested that ultrasound provided a viable alternative method for the modification of pectin.  相似文献   

2.
In our current research work, the effect of ultrasound irradiation on the enzymatic activity and enzymatic hydrolysis kinetic parameters of dextran catalysis by dextranase were investigated. Furthermore, the effects of ultrasound irradiation on the structure of dextranase were investigated with the aid of fluorescence spectroscopy and circular dichroism (CD) spectroscopy. The maximum activity of dextranase was observed when the sample was treated with ultrasound at 25 kHz, 40 W for 15 min, under which the enzyme activity increased by 13.43% compared the routine thermal incubation at 50 °C. Experimental Kinetics results, demonstrated that, both the Vmax and KM values of dextranase increased with ultrasound-treated compared with the incubation at 50 °C. Likewise, both the catalytic and specificity constants were higher under the effects of an ultrasonic field, indicating that, the substrate is converted into the product at an increased rate when compared with the incubation at 50 °C.On the other hand, fluorescence and CD spectra reflected that the ultrasound irradiation had increased the number of tryptophan on dextranase surface with increased α-helix by 15.74% and reduced random coil by 5.41% upon ultrasound-treated dextranase protein compared to the control, which were helpful for the improvement of its activity.  相似文献   

3.
The objective of this study was to explore the mechanisms of power ultrasound (PUS, 150 and 300 W) and treatment time (30 and 120 min) on the water-holding capacity (WHC) and tenderness of beef during curing. Beef muscle at 48 h post mortem was subjected to PUS treatment at a frequency of 20 kHz. Analysis of compression loss and shear force showed that PUS-assisted curing significantly increased the WHC and the tenderness of beef compared to static brining (p < 0.05). According to the analysis of LF-NMR, PUS treatment could increase the P21 values which indicated an improvement in water-binding ability of beef muscle. SDS-PAGE and LC-ESI-MS/MS analysis suggested that PUS induced moderate oxidation of myosin causing polymerization, which may contribute to increased water retention. On the other hand, an increased tenderness of beef is suggested by the increased MFI values and proteolysis of desmin and troponin-T. Transmission electron microscopy (TEM) further supported the effects of PUS on WHC and tenderness changes due to the swelling and disruption of myofibrils. Thus, these results provide knowledge about the mechanism for improving WHC and tenderness of beef by PUS curing, which could be employed as an emerging technology for various meat curing processes.  相似文献   

4.
Hollow microcapsules have been considered for potential applications as drug or gene carriers. This paper describes an investigation into the mechanical properties of microcapsules with a biocompatible polylactic acid (PLA) shell that can be destroyed using ultrasound irradiation. The microcapsules had a radius of 1 to 25 μm and a shell thickness of 100 nm to 3 μm, and their response to ultrasound pulses with a center frequency of 700 kHz to 2 MHz was investigated. It was found that approximately 50% of capsules with a radius of 20 μm were destroyed using pulses with a pressure amplitude of 50 kPa and a frequency of 700 kHz, which is close to the resonance frequency of the capsules.  相似文献   

5.
《Ultrasonics sonochemistry》2014,21(3):1083-1089
This paper illustrates the application of ultrasound in a dairy waste water treatment for the removal of fat using enzyme as a catalyst. Lipase Z was used to perform the enzymatic pre-hydrolysis of a synthetic dairy wastewater containing around 2000 mg/L of fat content coupled with ultrasound irradiation. Different process parameters like effect of enzyme loading, temperature, ultrasound power, frequency, duty cycle and speed of agitation are optimized. The maximum hydrolysis of 78% is achieved at 0.2% enzyme loading (w/v), 30 °C temperature, 165 W of ultrasonication power at 25 kHz and 66% duty cycle. It was observed that the enzymatic pre-hydrolysis under the influence of ultrasound drastically reduces the reaction time from 24 h to 40 min as compared to conventional stirring with improved yield.  相似文献   

6.
Synthesis of scorodite (FeAsO4·2H2O) using dynamic action agglomeration and the oxidation effect from ultrasound irradiation was investigated. The effect of different reaction temperatures (90, 70, 50, and 30 °C) on the size and morphology of scorodite particles synthesized under O2 gas flow and ultrasound irradiation was explored because the generation of fine bubbles depends on the solution temperature. At 90 °C, the size of scorodite particles was non-homogeneous (from fine particles (<1 μm) to large particles (>10 μm)). The oxidation–reduction potential (ORP) and yield at 90 °C showed lower values than those at 70 °C. The scorodite particles, including fine and non-homogeneous particles, were generated by a decrease in the oxidation of Fe(II) to Fe(III) and promotion of dissolution caused by the generation of radicals and jet flow from ultrasound irradiation. Using ultrasound irradiation in the synthesis of scorodite at low temperature (30 °C) resulted in the appearance of scorodite peaks in the X-ray diffraction (XRD) pattern after a reaction time of 3 h. The peaks became more intense with a reaction temperature of 50 °C and crystalline scorodite was obtained. Therefore, ultrasound irradiation can enable the synthesis of scorodite at 30 °C as well as the synthesis of large particles (>10 μm) at higher temperature. Oxide radicals and jet flow generated by ultrasound irradiation contributed significantly to the synthesis and crystal growth of scorodite.  相似文献   

7.
High intensity low frequency ultrasound was used to process dairy ingredients to improve functional properties. Based on a number of lab-scale experiments, several experimental parameters were optimised for processing large volumes of whey and casein-based dairy systems in pilot scale ultrasonic reactors. A continuous sonication process at 20 kHz capable of delivering up to 4 kW of power with a flow-through reactor design was used to treat dairy ingredients at flow rates ranging from 200 to 6000 mL/min. Dairy ingredients treated by ultrasound included reconstituted whey protein concentrate (WPC), whey protein and milk protein retentates and calcium caseinate. The sonication of solutions with a contact time of less than 1 min and up to 2.4 min led to a significant reduction in the viscosity of materials containing 18% to 54% (w/w) solids. The viscosity of aqueous dairy ingredients treated with ultrasound was reduced by between 6% and 50% depending greatly on the composition, processing history, acoustic power and contact time. A notable improvement in the gel strength of sonicated and heat coagulated dairy systems was also observed. When sonication was combined with a pre-heat treatment of 80 °C for 1 min or 85 °C for 30 s, the heat stability of the dairy ingredients containing whey proteins was significantly improved. The effect of sonication was attributed mainly to physical forces generated through acoustic cavitation as supported by particle size reduction in response to sonication. As a result, the gelling properties and heat stability aspects of sonicated dairy ingredients were maintained after spray drying and reconstitution. Overall, the sonication procedure for processing dairy systems may be used to improve process efficiency, improve throughput and develop value added ingredients with the potential to deliver economical benefits to the dairy industry.  相似文献   

8.
The thin-layer drying behavior of the municipal sewage sludge in a laboratory-scale hot air forced convective dryer assisted with air-borne ultrasound was investigated in between 70 and 130 °C hot air temperatures. The drying kinetics in the convective process alone were compared to that for ultrasound-assist process at three ultrasound powers (30, 90, 150 W). The average drying rates within whole drying temperature range at ultrasound powers of 30, 90 and 150 W increased by about 22.6%, 27.8% and 32.2% compared with the convective drying alone (without ultrasound). As the temperature increasing from 70 °C to 130 °C, there were maximum increasing ratios for the effective moisture diffusivities of the sewage sludge in both falling rate periods at ultrasonic power of 30 W in comparison with other two high powers. In between the ultrasound powers of 0 and 30 W, the effect of the power on the drying rate was significant, while its effect was not obvious over 30 W. Therefore, the low ultrasonic power can be just set in the drying process. The values of the apparent activation energy in the first falling rate period were down from 13.52 to 12.78 kJ mol−1, and from 17.21 to 15.10 kJ mol−1 for the second falling rate period with increasing the ultrasonic power from 30 to 150 W. The values of the apparent activation energy in two falling rate periods with the ultrasound-assist were less than that for the hot air convective drying alone.  相似文献   

9.
This study investigated the effect of ultrasound assisted chicken cartilage collagen peptide (CP) treatment on the storage quality of chicken breast meat. There were five meat groups at 4 °C for 60 min as follows: untreatment (Control), immersing in deionized water (DW), ultrasound treatment in DW (UDW), immersing in CP (0.15 g/100 mL) solution and immersing in ultrasound combined with CP (UCP). The results showed that the drip and cooking loss of meat decreased significantly in UCP at 4 and −18 °C with the extension of storage time. A large amount of non-flowing water transformed into free water in the 4 °C for 5 d, and the smallest degree of water migration was observed at −18 °C in UCP. The texture parameters of UCP group were significantly improved, especially for decreased hardness and increased elasticity. Furthermore, there had no significant effect on the color of chicken breast.  相似文献   

10.
Enzymatic browning and microbial growth lead to quality losses in apple products. In the present study, fresh apple juice was thermosonicated using ultrasound in-bath (25 kHz, 30 min, 0.06 W cm−3) and ultrasound with-probe sonicator (20 kHz, 5 and 10 min, 0.30 W cm−3) at 20, 40 and 60 °C for inactivation of enzymes (polyphenolase, peroxidase and pectinmethylesterase) and microflora (total plate count, yeast and mold). Additionally, ascorbic acid, total phenolics, flavonoids, flavonols, pH, titratable acidity, °Brix and color values influenced by thermosonication were investigated. The highest inactivation of enzymes was obtained in ultrasound with-probe at 60 °C for 10 min, and the microbial population was completely inactivated at 60 °C. The retention of ascorbic acid, total phenolics, flavonoids and flavonols were significantly higher in ultrasound with-probe than ultrasound in-bath at 60 °C. These results indicated the usefulness of thermosonication for apple juice processing at low temperature, for enhanced inactivation of enzymes and microorganisms.  相似文献   

11.
The sonoelectrochemical degradation of phenol in aqueous solutions with stainless steel electrodes and high-frequency ultrasound (850 kHz) was investigated. A 60% synergetic effect was obtained in the combined reaction system. High concentration of electrolyte (sodium sulfate) and a high electrical voltage are favorable conditions for the degradation of phenol. A nearly complete degradation of phenol was achieved with 4.26 g/L Na2SO4 and 30 V electrical voltages at 25 °C in 1 h. The degradation of phenol follows pseudo-first order kinetics. Considering costs and application, the energy efficiency of the reaction system with different reaction conditions was evaluated.  相似文献   

12.
Low-voltage direct current was applied to beef, inoculated with Escherichia coli O157:H7 on the surface covered with a thin film of 0.15 M NaCl solution. Experiments were conducted with 15, 30, and 45 mA/cm2 currents; 1, 10 and 100 kHz frequencies; 30, 50 and 70% duty cycles, and 2, 8 and 16 min treatment durations. Increase in current intensity, frequency, duty cycle, and treatment duration increased the % reduction of E. coli. A maximum reduction of 98.9% was achieved. Sensory color analysis showed significant differences between treated and untreated beef. The maximum temperature rise of NaCl solution was 31.9 °C.  相似文献   

13.
This study was performed to evaluate the responses of Escherichia coli 0157:H7 inoculated in an apple-carrot blended juice to manothermosonication (MTS) treatments. The MTS treatments were conducted in a continuous-flow MTS system. The juice samples were exposed to ultrasound treatment at combinations of three temperatures (60, 50 and 40 °C) and three pressure levels (100, 200, and 300 kPa) for five residence times (15, 30, 45, 60, and 75 s). The results showed that higher treatment temperature (i.e. 60 °C) and hydrostatic pressure in the MTS system significantly enhanced the microbial reduction. A FDA mandated 5-log CFU/ml reduction of E. coli 0157:H7 for juice processing was achieved in 30 s for MTS treatment at 60 °C, in comparison to 60 s at 50 °C. The Weilbull and Log-logistic models provided the best fitting of the inactivation data for the MTS treatments. Extensive damage of E. coli 0157:H7 cells treated with MTS was observed on micro-images of scanning electron microscopy and transmission electron microscopy.  相似文献   

14.
《Ultrasonics sonochemistry》2014,21(4):1535-1543
The potential of ultrasound-assisted technology has been demonstrated by several laboratory scale studies. However, their successful industrial scaling-up is still a challenge due to the limited pilot and commercial sonochemical reactors. In this work, a pilot reactor for laccase-hydrogen peroxide cotton bleaching assisted by ultrasound was scaled-up. For this purpose, an existing dyeing machine was transformed and adapted by including piezoelectric ultrasonic devices. Laboratory experiments demonstrated that both low frequency, high power (22 kHz, 2100 W) and high frequency, low power ultrasounds (850 kHz, 400 W) were required to achieve satisfactory results. Standard half (4 g/L H2O2 at 90 °C for 60 min) and optical (8 g/L H2O2 at 103 °C for 40 min) cotton bleaching processes were used as references. Two sequential stages were established for cotton bleaching: (1) laccase pretreatment assisted by high frequency ultrasound (850 kHz, 400 W) and (2) bleaching using high power ultrasound (22 kHz, 2100 W). When compared with conventional methods, combined laccase-hydrogen peroxide cotton bleaching with ultrasound energy improved the whitening effectiveness. Subsequently, less energy (temperature) and chemicals (hydrogen peroxide) were needed for cotton bleaching thus resulting in costs reduction. This technology allowed the combination of enzyme and hydrogen peroxide treatment in a continuous process. The developed pilot-scale reactor offers an enhancement of the cotton bleaching process with lower environmental impact as well as a better performance of further finishing operations.  相似文献   

15.
The current work deals with the value addition of lactose by transforming into hydrolyzed lactose syrup containing glucose and galactose in major proportion using the novel approach of ultrasound assisted acid catalyzed lactose hydrolysis. The hydrolysis of lactose was performed in ultrasonic bath (33 kHz) at 50% duty cycle at different temperatures as 65 °C and 70 °C and two different hydrochloric acid (HCl) concentrations as 2.5 N and 3 N. It was observed that acid concentration, temperature and ultrasonic treatment were the major factors in deciding the time required to achieve ∼90% hydrolysis. The ultrasonic assisted approach resulted in reduction in the reaction time and the extent of intensification was established to be dependent on the temperature, acid concentration and time of ultrasonic exposure. It was observed that the maximum process intensification obtained by introduction of ultrasound in the lactose hydrolysis process performed at 70 °C and 3 N HCl was reduction in the required time for ∼90% hydrolysis from 4 h (without the presence of ultrasound) to 3 h. The scale-up study was also performed using an ultrasonic bath with longitudinal horn (36 kHz as operating frequency) at 50% duty cycle, optimized temperature of 70 °C and acid concentration of 3 N. It was observed that the reaction was faster in the presence of ultrasound and stirring by axial impeller at rpm of 225 ± 25. The time required to complete ∼90% of hydrolysis remained almost the same as observed for small scale study on ultrasonic bath (33 kHz) at 50% duty cycle. The use of recovered lactose from whey samples instead of pure lactose did not result in any significant changes in the progress of hydrolysis, confirming the efficacy of the selected approach. Overall, the work has presented a novel ultrasound assisted approach for intensified lactose hydrolysis.  相似文献   

16.
We propose an efficient approach to develop large-range liquid level sensors based on an extrinsic Fabry–Perot optical fibre interferometer with an all fused-silica structure and CO2 laser heating fusion bonding technology. The sensor exhibits signatures of a high sensitivity of 5.3 nm/kPa (36.6 nm/psi), a resolution of 6.8 Pa (9.9×10−4 psi) and an extreme low temperature dependence of 0.013 nm/°C. As a result, a high resolution of the water level measurement of approximately 0.7 mm on the length scale of 5 m and small errors of the water pressure measurement induced by the temperature dependence within 0.0025 kPa/°C (0.00036 psi/°C, water level 0.25 mm/°C) are achieved, thus providing useful applications for the detection of the large-range liquid level in harsh environments.  相似文献   

17.
The purpose of this study was to investigate the effect of non-thermal technology, a high power ultrasound (HPU) in continuous flow treatment on the reduction in number of Brettanomyces yeasts and lactic acid bacteria (LAB) in wine samples. Yeast cells and lactic acid bacteria were screened for their sensitivity to a high power ultrasound treatment using an ultrasonic processor (400 W, 24 kHz, 100 μm amplitude) at two different wine temperatures (30 and 40 °C). High power ultrasound treatment in continuous flow showed satisfactory reduction of Brettanomyces yeasts (89.1–99.7%) and lactic acid bacteria (71.8–99.3%). Sensory properties of wine were impaired. The results indicate a great potential for the application of HPU in continuous flow system for wine processing in terms of lower usage of SO2 and preservatives. More attention is needed to preserve sensorial properties of wine.  相似文献   

18.
The aim of this study was to evaluate the effects of power ultrasound intensity (PUS, 2.39, 6.23, 11.32 and 20.96 W cm−2) and treatment time (30, 60, 90 and 120 min) on the oxidation and structure of beef proteins during the brining procedure with 6% NaCl concentration. The investigation was conducted with an ultrasonic generator with the frequency of 20 kHz and fresh beef at 48 h after slaughter. Analysis of TBARS (Thiobarbituric acid reactive substances) contents showed that PUS treatment significantly increased the extent of lipid oxidation compared to static brining (P < 0.05). As indicators of protein oxidation, the carbonyl contents were significantly affected by PUS (P < 0.05). SDS–PAGE analysis showed that PUS treatment increased protein aggregation through disulfide cross-linking, indicated by the decreasing content of total sulfhydryl groups which would contribute to protein oxidation. In addition, changes in protein structure after PUS treatment are suggested by the increases in free sulfhydryl residues and protein surface hydrophobicity. Fourier transformed infrared spectroscopy (FTIR) provided further information about the changes in protein secondary structures with increases in β-sheet and decreases in α-helix contents after PUS processing. These results indicate that PUS leads to changes in structures and oxidation of beef proteins caused by mechanical effects of cavitation and the resultant generation of free radicals.  相似文献   

19.
《Ultrasonics sonochemistry》2014,21(6):2165-2175
Ultrasonic processing can suit a number of potential applications in the dairy industry. However, the impact of ultrasound treatment on milk stability during storage has not been fully explored under wider ranges of frequencies, specific energies and temperature applications. The effect of ultrasonication on lipid oxidation was investigated in various types of milk. Four batches of raw milk (up to 2 L) were sonicated at various frequencies (20, 400, 1000, 1600 and 2000 kHz), using different temperatures (4, 20, 45 and 63 °C), sonication times and ultrasound energy inputs up to 409 kJ/kg. Pasteurized skim milk was also sonicated at low and high frequency for comparison. In selected experiments, non-sonicated and sonicated samples were stored at 4 °C and were drawn periodically up to 14 days for SPME–GCMS analysis. The cavitational yield, characterized in all systems in water, was highest between 400 kHz and 1000 kHz. Volatile compounds from milk lipid oxidation were detected and exceeded their odor threshold values at 400 kHz and 1000 kHz at specific energies greater than 271 kJ/kg in raw milk. However, no oxidative volatile compounds were detected below 230 kJ/kg in batch systems at the tested frequencies under refrigerated conditions. Skim milk showed a lower energy threshold for oxidative volatile formation. The same oxidative volatiles were detected after various passes of milk through a 0.3 L flow cell enclosing a 20 kHz horn and operating above 90 kJ/kg. This study showed that lipid oxidation in milk can be controlled by decreasing the sonication time and the temperature in the system depending on the fat content in the sample among other factors.  相似文献   

20.
Bacterial cellulose (BC) film formation could be a critical issue in nanotechnology applications such as biomedical or smart materials products. In this research, purified pretreated BC was subjected to high intensity ultrasound (HIUS) and was investigated for the development of BC films. The morphological, structural and thermal properties of the obtained films were studied by using FE-SEM, AFM, FT-IR, XRD, TGA and DSC characterizations. Results showed that the most favorable purification treatment was the 0.01 M NaOH at 70 °C for 2 h under continuous stirring. The most suitable ultrasound operating conditions were found to be, 1 cm distance of ultrasonic probe from the bottom of the beaker, submerged in cold water bath cooling around 12 ± 2 °C. The power (25 W/cm2), time (30 min), BC concentration (0.1% w/w), amplitude (20 μm) and frequency (20 kHz) were maintained constant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号