首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In our current research work, the effect of ultrasound irradiation on the enzymatic activity and enzymatic hydrolysis kinetic parameters of dextran catalysis by dextranase were investigated. Furthermore, the effects of ultrasound irradiation on the structure of dextranase were investigated with the aid of fluorescence spectroscopy and circular dichroism (CD) spectroscopy. The maximum activity of dextranase was observed when the sample was treated with ultrasound at 25 kHz, 40 W for 15 min, under which the enzyme activity increased by 13.43% compared the routine thermal incubation at 50 °C. Experimental Kinetics results, demonstrated that, both the Vmax and KM values of dextranase increased with ultrasound-treated compared with the incubation at 50 °C. Likewise, both the catalytic and specificity constants were higher under the effects of an ultrasonic field, indicating that, the substrate is converted into the product at an increased rate when compared with the incubation at 50 °C.On the other hand, fluorescence and CD spectra reflected that the ultrasound irradiation had increased the number of tryptophan on dextranase surface with increased α-helix by 15.74% and reduced random coil by 5.41% upon ultrasound-treated dextranase protein compared to the control, which were helpful for the improvement of its activity.  相似文献   

2.
《Ultrasonics sonochemistry》2014,21(4):1325-1334
In this research work, dextranase was immobilized onto calcium alginate beads by the combination of ultrasonic irradiation and high hydrostatic pressure (US/HHP) treatments. Effects of US/HHP treatments on loading efficiency and immobilization yield of dextranase enzyme onto calcium alginate beads were investigated. Furthermore, the activities of immobilized enzymes prepared with and without US/HHP treatments and that prepared with ultrasonic irradiation (US) and high hydrostatic pressure (HHP), as a function of pH, temperature, recyclability and enzyme kinetic parameters, were compared with that for free enzyme. The maximum loading efficiency and the immobilization yield were observed when the immobilized dextranase was prepared with US (40 W at 25 kHz for 15 min) combined with HHP (400 MPa for 15 min), under which the loading efficiency and the immobilization yield increased by 88.92% and 80.86%, respectively, compared to immobilized enzymes prepared without US/HHP treatment. On the other hand, immobilized enzyme prepared with US/HHP treatment showed Vmax, KM, catalytic and specificity constants values higher than that for the immobilized enzyme prepared with HHP treatment, indicated that, this new US/HHP method improved the catalytic kinetics activity of immobilized dextranase at all the reaction conditions studied. Compared to immobilized enzyme prepared either with US or HHP, the immobilized enzymes prepared with US/HHP method exhibited a higher: pH optimum, optimal reaction temperature, thermal stability and recyclability, and lower activation energy, which, illustrating the effectiveness of the US/HHP method. These results indicated that, the combination of US and HHP treatments could be an effective method for improving the immobilization of enzymes in polymers.  相似文献   

3.
Monoglyceryl phenolic acids (MPAs) were known as the natural hydrophilic antioxidants which could be used in different fields such as food, pharmaceutical, cosmetic etc. A novel enzymatic route of MPAs synthesis by the alcoholysis of phenolic acid ethyl esters with glycerol under ultrasound irradiation in solvent free system was developed. Optimization of reaction parameters shows that a high conversion of above 97.4% can be obtained under the following conditions: phenolic acid ethyl esters to glycerol molar ratio of 1:10, with 6% catalyst (Novozym 435), at 60 °C and 200 rpm, with ultrasound input of 250 W, at 20 kHz frequency. Compared to the conventional stirring method, the activation energy for phenolic acid ethyl esters conversion was decreased from 65.0 kJ/mol to 32.1 kJ/mol under ultrasound promotion; the apparent kinetic constant (Vm/Km) increased above 1.2-folds; the lipase amount decreased to 50%; the time required for the maximum conversion reduced up to 3-folds without damaging the lipase activity, which is the fastest report for enzymatic synthesis of MPAs.  相似文献   

4.
《Solid State Ionics》2006,177(19-25):1795-1798
Oxygen deficiency, thermal and chemical expansion of La0.5Sr0.5Fe1−xCoxO3−δ (x = 0, 0.5, 1) have been measured by thermogravimetry, dilatometry and high temperature X-ray diffraction. The rhombohedral perovskite materials transformed to a cubic structure at 350 ± 50 °C. The thermal expansion of the materials up to the onset of thermal reduction was 14–18 × 10 6 K 1. Above 500 °C in air (400 °C in N2), chemical expansion contributed to the thermal expansion and the linear thermal expansion coefficients were significantly higher, 16–35 × 10 6 K 1. The chemical expansion, εc, showed a maximum of 0.0045 for x = 0.5 and 0.0041 for x = 1 at 800–900 °C. The normalized chemical expansion, εcδ, was 0.036 for x = 0.5 and 0.035 for x = 1 at 800 °C. The chemical expansion can be correlated with an increasing ionic radius of the transition metals with decreasing valence state.  相似文献   

5.
With Nd3+ doping and Ca2+, Sr2+ modulating in the sol–gel technique, a series of polycrystalline perovskite samples La0.7?xNdx(Ca,Sr)0.3MnO3 (x = 0, 0.05, 0.1, 0.15, 0.20, 0.25) was prepared, their maximum magnetic entropy changes were tuned to room temperature (ΔSH = ?1.47 J/kg K at 298 k for La0.45Nd0.25(Ca,Sr)0.3MnO3), an enhancement of the maximum magnetic entropy change (ΔSH = ?1.89 J/kg K at 315 k) and its refrigerant capacity (about 45.3 J/kg) had also been obtained under 9 kOe magnetic field variation for La0.55Nd0.15(Ca,Sr)0.3MnO3 contrast to La0.7(Ca,Sr)0.3MnO3.  相似文献   

6.
The effect of chlorides of magnesium, calcium, strontium and barium on the temperature of the sound velocity maximum (TSVM) of water, Tw, has been studied by determining the ultrasonic velocity using a single crystal variable path interferometer working at 3 MHz. The accuracy in ultrasonic velocity measurement is ± 0.05 m s 1. The ultrasonic velocity measurements were carried out at ≃ 2 °C intervals over a range of 5 °C to either side of TSVM of the solutions. The accuracy in fixing TSVM is ± 0.2 °C. The shifts in TSVM of water due to the addition of MgCl2 and CaCl2, (ΔTobs), are found to be positive at low concentrations becoming maxima around the weight fraction w  2.3 × 10 2 for MgCl2 and w  3.8 × 10 2 for CaCl2 and becoming negative around w  5.6 × 10 2 for MgCl2 and w  3.8 × 10 2 for CaCl2. (ΔTobs) for MgCl2 > CaCl2 > SrCl2 > BaCl2 indicating that the strength of the structural interactions in modifying the hydrogen-bonded structure of water is in the order Mg2+ > Ca2+ > Sr2+ > Ba2+. The results are explained in the light of the structural properties of the anions and cations in the solutions in modifying the three dimensional hydrogen-bonded structure of water.  相似文献   

7.
Magnetic properties and magnetocaloric effects (MCEs) of the intermetallic Ho3Al2 compound are investigated by magnetization and heat capacity measurements. Two successive magnetic transitions, a spin-reorientation (SR) transition at TSR=31 K followed by a ferromagnetic (FM) to paramagnetic (PM) transition at TC=40 K, are observed. Both magnetic transitions contribute to the MCE and result in a large magnetic entropy change (ΔSM) in a wide temperature range. The maximum values of ?ΔSM and adiabatic temperature change (ΔTad) reach 18.7 J/kg K and 4.8 K for the field changes of 0–5 T, respectively. In particular, a giant value of refrigerant capacity (RC) is estimated to be 704 J/kg for a field change of 5 T, which is much higher than those of many potential refrigerant materials with similar transition temperatures.  相似文献   

8.
The Electromagnetically Induced Transparency (EIT) effect in a Λ-system formed by Cs atoms (6S1/2 ? 6P3/2 ? 6S1/2) confined in an extremely thin cell (ETC) (atomic column thickness L varies in the range of 800 nm –3 µm is studied both experimentally and theoretically. It is demonstrated that when the coupling laser frequency is in exact resonance with the corresponding atomic transition, the EIT resonance parameters weakly depend on L, which allows us to detect the effect at L = λ = 852 nm. EIT process reveals a striking peculiarity in case of the coupling laser detuned by Δ from the atomic transition, namely the width of the EIT resonance rapidly increases upon an increase in Δ (an opposite effect is observed in centimeter-scale cells). The strong broadening of the EIT resonance for large values of detunings Δ is caused by the influence of atom-wall collisions on dephasing rate of coherence. The influence of the coupling laser on the velocity selective optical pumping/saturation resonances formed in ETC has been also studied. The theoretical model well describes the observed results.  相似文献   

9.
These last past years, a major interest has been devoted to decrease the working temperature of solid oxide fuel cells (SOFCs) down to about 700 °C.Apatite materials (La10 ? xSrxSi6O27?x/2) are attractive candidates for solid electrolytes, with a high ionic conductivity at these intermediate temperatures. An apatite powder (x = 1) with a 0.75 µm mean particle size, produced by solid state reaction, was tape cast to obtain green sheets with a thickness of about 260 µm.On one hand, the densification mechanism of the apatite ceramic during the intermediate solid state sintering has been approached. It appeared from the kinetical tests performed under isothermal conditions between 1250 and 1550 °C, that densification could be controlled by the diffusion at grain boundaries of the rare-earth element, La, with an activation energy of 470 kJ/mol.On the other hand, conductivity measurements were performed on apatite samples sintered at 1400 and 1500 °C. The ionic conductivity was mainly sensitive to the presence of secondary phases at 1400 °C. The ionic conductivity of the apatite sintered at 1500 °C (mean grain size = 3.9 µm) is equal to 1.2 × 10? 2 S/cm at 700 °C.  相似文献   

10.
The Cr 2p and O 1s binding energy (BE) levels have been calculated by first principles methods for different models of hydroxylated (0001)-Cr2O3 surfaces. Several surface terminations have been considered. The calculations allow us to reproduce the O 1s shifts between O in oxide and OH groups. It is found that two main effects account for the OH binding energy shifts. On the one hand, the increased covalency of the O–H bond with respect to the Cr–O bond, lowers the electronic O (1s and 2p) energy, and in consequence the BE of the core levels (O 1s) are higher. On the other hand, the lower the OH coordination number, the higher the valence and core levels energy, and the lower the BE. Consequently, mono-coordinated hydroxyls have a binding energy near that of O2? in the oxide (ΔBEOH–O = ? 0.2–0.0 eV). Two-fold coordinated hydroxyls have a slightly higher BE (ΔBEOH–O = + 0.3 eV). Three-fold coordinated OH groups have a higher binding energy (ΔBEOH–O = + 0.6?0.7 eV), corresponding to that experimentally measured for OH groups. Finally, water adsorbed above OH groups exhibits a still higher BE (ΔBEHOH–O = + 0.9–1.0 eV). The ΔBE are slightly under-estimated under the initial state approximation, and overestimated under the final state (Z + 1) approximation.  相似文献   

11.
The (12 × 12) and (14 × 14) valence band anticrossing (V-BAC) models were applied to calculate the electronic band structure of GaAs1xBix dilute alloys along Δ-, Λ- and Σ-directions at room temperature. A comparative study based on these models was performed in terms of energy levels, optical transitions, spin–orbit splitting and effective mass. We found a significant reduction of the band-gap energy Eg by roughly 81 meV/%Bi accompanied by an increase in the spin–orbit splitting Δso+ by about 56 meV/%Bi. Furthermore, Δso+ does come into resonance with Eg at ∼12%Bi for resonance energy equal to 0.73 eV. An excellent agreement has occurred between the (14 × 14) V-BAC model predictions and experimental results reported in the literature. In addition, we have investigated the Bi composition and k-directions dependence of the effective mass at Γ point. A slight increase of the holes effective mass with x can affect the holes transport properties of GaAsBi. The intrinsic carrier density increases with both x and the temperature T, but it remains below 1010 cm−3 for x  5% and T  300 K.  相似文献   

12.
The superconducting gap in FeAs-based superconductor SmFeAs(O1?xFx) (x = 0.15 and 0.30) and the temperature dependence of the sample with x = 0.15 have been measured by Andreev reflection spectroscopy. The intrinsic superconducting gap is independent of contacts while many other “gap-like” features vary appreciably for different contacts. The determined gap value of 2Δ = 13.34 ± 0.47 meV for SmFeAs(O0.85F0.15) gives 2Δ/kBTC = 3.68, close to the BCS prediction of 3.53. The superconducting gap decreases with temperature and vanishes at TC, in a manner similar to the BCS behavior but dramatically different from that of the nodal pseudogap behavior in cuprate superconductors.  相似文献   

13.
This research explores the mechanism of ultrasonic pretreatment on enzymolysis of defatted wheat germ protein (DWGP). The enzymolysis reaction kinetics and thermodynamics were studied after ultrasonic pretreatments using a probe-type sonicator and an ultrasonic cleaning bath, and the results were compared with traditional enzymolysis. The results showed that both the traditional and ultrasonic pretreated enzymolysis fit well to first-order kinetics. Both the temperature and ultrasound had a positive effect on the enzymolysis of DWGP, with temperature playing a dominant role. Under the optimized conditions of DWGP concentration of 1% (w/v), Alcalase concentration of 2000 U/g, time of 10 min and temperature of 50 °C, both the probe and cleaning bath ultrasonic pretreated enzymolysis showed high polypeptide concentrations (231.019 and 231.320 μg/mL) and low energy requirements. In comparison with traditional enzymolysis, these methods significantly increased the reaction rate constant (k) by 166.7% and 144.4%, 92.9% and 85.7%, 28.0% and 28.0%, 16.1% and 12.9% at 20, 30, 40 and 50 °C, and decreased the activation energy (Ea), enthalpy of activation (ΔH), Gibbs free energy of activation (ΔG) and entropy of activation (ΔS) by 68.6% and 62.4%, 74.1% and 67.5%, 34.3% and 31.2%, 1.4% and 1.3%. It can be concluded that ultrasonic pretreatment of DWGP can remarkably improve the enzymolysis efficiency and consequently leads to the production of higher polypeptide yield.  相似文献   

14.
By employing numerical solutions of the Poisson–Boltzmann equation we have studied the interface capacitance of flat electrodes with stripes of different potentials of zero charge ?pzc. The results depend on the ratio of the width of the stripes l to the dielectric screening length in the electrolyte, the Debye length dDebye, as well as on the difference Δ?pzc in relation kBT/e. As expected, the capacitance of a striped surface has its minimum at the mean potential of the surface if l/dDebye << 1 and displays two minima if l/dDebye >> 1. An unexpected result is that for Δ?pzc ? 0.2V, the transition between the two extreme cases does not occur when l ? dDebye, but rather when l > 10dDebye. As a consequence, a single minimum in the capacitance is observed for dilute electrolytes even for 100 nm wide stripes. The capacitance at the minimum is however higher than for homogeneous surfaces. Furthermore, the potential at the minimum deviates significantly from the potential of zero mean charge on the surface if l > 3dDebye and Δ?pzc is larger than about 4kBT/e. The capacitance of stepped, partially reconstructed Au(11n) surfaces is discussed as an example. Consequences for Parsons–Zobel-plots of the capacitances of inhomogeneous surfaces are likewise discussed.  相似文献   

15.
Color characteristics of the E- and O-modes in the fringe-field switching mode using the liquid crystal with negative dielectric anisotropy have been investigated. According to calculated and measured results for color shift up to 70° of polar angle in all directions, a cell with E-mode shows smaller color shift with varying viewing direction than a cell with O-mode in all grey levels, for instance, the color shift in a white state is much smaller in the E-mode (Δxy = 0.1819) than in the O-mode (Δxy = 0.0798). However, the color shift of the white state is strongly suppressed for both E-mode (Δxy = 0.0199) and O-mode (Δxy = 0.0093) with a dual domain structure.  相似文献   

16.
《Ultrasonics sonochemistry》2014,21(5):1682-1687
A comparative study of the immobilized Candida antarctica lipase B (Novozym 435)-catalyzed acylation of cordycepin with vinyl acetate in ionic liquids (ILs) under ultrasonic irradiation and shaking was conducted. The application of ultrasonic irradiation instead of shaking during acylation resulted in an enhanced reaction rate and a higher level of substrate conversion. Among the various ILs examined, 1-butyl-3-methylimidazolium tetrafluorobrate ([C4MIm][BF4]) was the best medium for the reaction because it produced the highest substrate conversion. In [C4MIm][BF4], the optimal ultrasonic power, water activity, and reaction temperature were 120 W, 0.33, and 50 °C, respectively. The acylation of cordycepin in [C4MIm][BF4] proved to be regioselective under both conditions: the C5′-OH was acylated. Novozym 435 exhibited a much higher operational stability in [C4MIm][BF4], and 58.0% of its original activity was maintained after ten reuse cycles under ultrasonic irradiation. Compared with the cordycepin, the rate of adenosine deaminase-catalyzed deamination was greatly reduced when the 5′-OH was substituted by acetyl group. These results demonstrated that the combined application of ultrasonic irradiation and IL as a medium was an efficient approach for the enzymatic modification of cordycepin.  相似文献   

17.
Present work deals with the ultrasound-assisted biodiesel production from low cost, substantial acid value kusum (Schleichera triguga) oil using a two-step method of esterification in presence of acid (H2SO4) catalyst followed by transesterification using a basic heterogeneous barium hydroxide (Ba(OH)2) catalyst. The initial acid value of kusum oil was reduced from 21.65 to 0.84 mg of KOH/g of oil, by acid catalyzed esterification with 4:1 methanol to oil molar ratio, catalyst concentration 1% (v/v), ultrasonic irradiation time 20 min at 40 °C. Then, Ba(OH)2 concentration of 3% (w/w), methanol to oil molar ratio of 9:1, ultrasonic irradiation time of 80 min, and temperature of 50 °C was found to be the optimum conditions for transesterification step and triglyceride conversion of 96.8% (wt) was achieved. This paper also examined the kinetics as well as the evaluation of thermodynamic parameters for both esterification and transesterification reactions. The lower value of activation energy and higher values of kinetic constants indicated a fast rate of reaction, which could be attributed to the physical effect of emulsification, in which the microturbulence generated due to radial motion of bubbles, creates an intimate mixing of the immiscible reactants causing the increase in the interfacial area, giving faster reaction kinetics. The positive values of Gibbs-free energy (ΔG), enthalpy (ΔH) and negative value of entropy (ΔS) revealed that both the esterification and transesterification were non-spontaneous, endothermic and endergonic reactions. Therefore, the present work has not only established the escalation obtained due to ultrasonication but also exemplified the two-step approach for synthesis of biodiesel from non-edible kusum oil based on the use of heterogeneous catalyst for the transesterification step.  相似文献   

18.
《Solid State Ionics》2006,177(19-25):1747-1752
Oxygen tracer diffusion coefficient (D) and surface exchange coefficient (k) have been measured for (La0.75Sr0.25)0.95Cr0.5Mn0.5O3−δ using isotopic exchange and depth profiling by secondary ion mass spectrometry technique as a function of temperature (700–1000 °C) in dry oxygen and in a water vapour-forming gas mixture. The typical values of D under oxidising and reducing conditions at ∼ 1000 °C are 4 × 10 10 cm2 s 1 and 3 × 10 8 cm2 s 1 respectively, whereas the values of k under oxidising and reducing conditions at ∼ 1000 °C are 5 × 10 8 cm s 1 and 4 × 10 8 cm s 1 respectively. The apparent activation energies for D in oxidising and reducing conditions are 0.8 eV and 1.9 eV respectively.  相似文献   

19.
Magnetic properties and magnetocaloric effects (MCEs) of the intermetallic Gd1?xHoxNiIn (x=0?1) compounds have been evaluated by magnetization and heat capacity measurements. The Curie temperature TC can be tuned from near 100 K to 20 K by substituting Ho for Gd atoms. In addition, all the compounds with Ho atoms undergo two successive magnetic transitions with the decrease of temperature: a paramagnetic (PM) to ferromagnetic (FM) transition around TC and a spin-reorientation (SR) transition around 7?9 K. It is found that both transitions contribute to the magnetic entropy change (ΔSM). For a field change of 5 T, the maximum values of ?ΔSM for Gd0.4Ho0.6NiIn are 6 J/kg K at Tt=9 K and 10 J/kg K at TC=52 K, respectively. These two ?ΔSM peaks overlap partly and result in a wide working temperature range of MCE, and thus leading to the largest RC value of 443 J/kg in the Gd1?xHoxNiIn system.  相似文献   

20.
Correlation of phase formation, critical transition temperature Tc, microstructure, and critical current density Jc with sintering temperature has been studied for acetone doped MgB2/Fe tapes. Sintering was performed at 600–850 °C for 1 h in a flowing Ar atmosphere. High boron substitution by carbon was obtained with increasing the sintering temperature; however, the acetone doped samples synthesized at 800 °C contain large size MgB2 grains and more MgO impurities. Incomplete reaction for the acetone doped samples heated at 600 °C result in bad intergrain connectivity. At 4.2 K, the best Jc value was achieved in the acetone doped sample sintered at 700 °C, which reached 24,000 A/cm2 at 10 T and 10,000 A/cm2 at 12 T, respectively. Our results indicate that the small grain size and less impurity were also important for the improvement of JcB properties besides the substitutions of B by C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号