首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The sonocatalytic performance of CeO2 nanoparticles synthesized by a hydrothermal method (CeO2-H) and CeO2@biochar (CeO2-H@BC) nanocomposite, were evaluated for the degradation of Reactive Red 84 (RR84) under ultrasonic irradiation. For comparison purposes the corresponding performance of bare biochar (BC) and commercial CeO2 (CeO2-C) samples were also assessed. A complementary characterization study, involving scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray diffraction (XRD), N2 adsorption at −196 °C (Brunauer–Emmett–Teller (BET) method) and Fourier transform infrared spectroscopy (FT-IR) was undertaken to gain insight into the structure-performance relationships. The effect of various parameters such as initial RR84 concentration, solution pH, catalyst amount and ultrasonic power on the sonodegradation of RR84 was studied in detail. The results indicated that the CeO2-H@BC nanocomposite exhibited the best RR84 degradation efficiency, which is enhanced with the increase of CeO2-H@BC amount and ultrasonic power but diminished with the increment in RR84 concentration and pH value. A 98.5% degradation was obtained with a CeO2-H@BC amount of 1 g/L, ultrasonic power of 450 W, pH of 6.5 and initial RR84 concentration of 10 mg/L. The quenching effects of various scavengers proposed that OH radical plays the key role in the process. Analyses of intermediates by Gas chromatography-Mass spectroscopy (GC–MS) identified several by-products and accordingly the main pathway was proposed.  相似文献   

2.
Central events of ultrasonic action are the bubbles of cavitation that can be considered as powered microreactors within which high-energy chemistry occurs. This work presents the results of a comprehensive numerical assessment of frequency and saturating gases effects on single bubble sonochemistry. Computer simulations of chemical reactions occurring inside a bubble oscillating in liquid water irradiated by an ultrasonic wave have been performed for a wide range of ultrasonic frequencies (213–1100 kHz) under different saturating gases (O2, air, N2 and H2). For O2 and H2 bubbles, reactions mechanism consisting in 25 reversible chemical reactions were proposed for studying the internal bubble-chemistry whereas 73 reversible reactions were taken into account for air and N2 bubbles. The numerical simulations have indicated that radicals such as OH, H, HO2 and O are created in the bubble during the strong collapse. In all cases, hydroxyl radical (OH) is the main oxidant created in the bubble. The production rate of the oxidants decreases as the driving ultrasonic frequency increases. The production rate of OH radical followed the order O2 > air > N2 > H2 and the order becomes more remarkable at higher ultrasonic frequencies. The effect of ultrasonic frequency on single bubble sonochemistry was attributed to its significant impact on the cavitation process whereas the effects of gases were attributed to the nature of the chemistry produced in the bubble at the strong collapse. It was concluded that, in addition to the gas solubility, the nature of the internal bubble chemistry is another parameter of a paramount importance that controls the overall sonochemical activity in aqueous solutions.  相似文献   

3.
When a liquid is irradiated with high intensities of ultrasound irradiation, acoustic cavitation occurs. Acoustic cavitation generates free radicals from the breakdown of water and other molecules. Cavitation can be fatal to cells and is utilized to destroy cancer tumors. The existence of particles in liquid provides nucleation sites for cavitation bubbles and leads to decrease the ultrasonic intensity threshold needed for cavitation onset. In the present investigation, the effect of gold nanoparticles with appropriate amount and size on the acoustic cavitation activity has been shown by determining hydroxyl radicals in terephthalic acid solutions containing 15, 20, 28 and 35 nm gold nanoparticles sizes by using 1 MHz low level ultrasound. The effect of sonication intensity in hydroxyl radical production was considered.The recorded fluorescence signal in terephthalic acid solutions containing gold nanoparticles was considerably higher than the terephthalic acid solutions without gold nanoparticles at different intensities of ultrasound irradiation. Also, the results showed that the recorded fluorescence signal intensity in terephthalic acid solution containing finer size of gold nanoparticles was lower than the terephthalic acid solutions containing larger size of gold nanoparticles. Acoustic cavitation in the presence of gold nanoparticles can be used as a way for improving therapeutic effects on the tumors.  相似文献   

4.
The ultrasonic extraction of oils is a typical physical processing technology. The extraction process was monitored from the standpoint of the oil quality and efficiency of oil extraction. In this study, the ultrasonic cavitation fields were measured by polyvinylidene fluoride (PVDF) sensor. Waveform of ultrasonic cavitation fields was gained and analyzed. The extraction yield and oxidation properties were compared. The relationship between the fields and cavitation oxidation was established. Numerical calculation of oscillation cycle was done for the cavitation bubbles. Results showed that the resonance frequency, fr, of the oil extraction was 40 kHz. At fr, the voltage amplitude was the highest; the time was the shortest as reaching the amplitude of the waveform. Accordingly, the cavitation effect worked most rapidly, resulting in the strongest cavitation intensity. The extraction yield and oxidation properties were closely related to the cavitation effect. It controlled the cavitation oxidation effectively from the viewpoint of chemical and physical aspects.  相似文献   

5.
Nano-sized magnetic Fe0/polyaniline (Fe0/PANI) nanofibers were used as an effective material for sonocatalytic degradation of organic anionic Congo red (CR) dye. Fe0/PANI, was synthesized via reductive deposition of nano-Fe0 onto the PANI nanofibers at room temperature. Prepared catalyst was characterized using HR-TEM, FE-SEM, XRD, FTIR instruments. The efficacy of catalyst in removing CR was assessed colorimetrically using UV–visible spectroscopy under different experimental conditions such as % of Fe0 loading into the composite material, solution pH, initial concentration of dye, catalyst dosage, temperature and ultrasonic power. The optimum conditions for sonocatalytic degradation of CR were obtained at catalyst concentrations = 500 mg.L−1, concentration of CR = 200 ppm, solution pH = neutral (7.0), temperature = 30 °C, % of Fe0 loading = 30% and 500 W ultrasonic power. The experimental results showed that ultrasonic process could remove 98% of Congo red within 30 min with higher Qmax value (Qmax = 446.4 at 25 °C). The rate of degradation of CR dye was much faster in this ultrasonic technique rather than conventional adsorption process. The degradation efficiency declined with the addition of common inorganic salts (NaCl, Na2CO3, Na2SO4 and Na3PO4). The rate of degradation suppressed more with increasing salt concentration. Kinetic and isotherm studies indicated that the degradation of CR provides pseudo-second order rate kinetic and Langmuir isotherm model compared to all other models tested. The excellent high degradation capacity of Fe0/PANI under ultrasonic irradiation can be explained on the basis of the formation of active hydroxyl radicals (OH) and subsequently a series of free radical reactions.  相似文献   

6.
The generation of hydroxyl (OH) radicals was investigated during ultrasonic irradiation and in the presence of TiO(2). The effect of TiO(2) on an ultrasonic system's oxidation power was evaluated by examining the oxidation of salicylic acid. The generation of the salicylic acid derivatives, 2,3-dihydroxybenzoic acid (DHBA) and 2,5-DHBA, was measured by high-performance liquid chromatography coupled with electrochemical detection under different experimental conditions. The presence of TiO(2) enhanced the generation of DHBA during ultrasonic irradiation, thus indicating a higher oxidation power in the ultrasonic system. Al(2)O(3) also increased the generation of DHBA during irradiation; however, the effect of TiO(2) was found to be higher than that of Al(2)O(3). The addition of OH radical scavengers such as dimethylsulfoxide (DMSO), methanol and mannitol significantly suppressed the production of DHBA, and DMSO was found to have the highest suppressive effect among all scavengers. The effects of dissolved gases on the generation of OH radicals were further studied, and their power was found to be in the order Xe > Ar > O(2) > N(2). The degassing of the irradiation solution completely suppressed the generation of OH radicals. These results indicate that the presence of TiO(2) accelerates the generation of OH radicals during ultrasonic irradiation, and that the process may be mediated through the induction of cavitation bubbles in irradiating solutions.  相似文献   

7.
In the present work, the influence of gas addition is investigated on both sonoluminescence (SL) and radical formation at 47 and 248 kHz. The frequencies chosen in this study generate two distinct bubble types, allowing to generalize the conclusions for other ultrasonic reactors. In this case, 47 kHz provides transient bubbles, while stable ones dominate at 248 kHz. For both bubble types, the hydroxyl radical and SL yield under gas addition followed the sequence: Ar > Air > N2 >> CO2. A comprehensive interpretation is given for these results, based on a combination of thermal gas properties, chemical reactions occurring within the cavitation bubble, and the amount of bubbles. Furthermore, in the cases where argon, air and nitrogen were bubbled, a reasonable correlation existed between the OH-radical yield and the SL signal, being most pronounced under stable cavitation at 248 kHz. Presuming that SL and OH originate from different bubble populations, the results indicate that both populations respond similarly to a change in acoustic power and dissolved gas. Consequently, in the presence of non-volatile pollutants that do not quench SL, sonoluminescence can be used as an online tool to qualitatively monitor radical formation.  相似文献   

8.
Fe3O4-graphene/ZnO@mesoporous-SiO2 (MGZ@SiO2) nanocomposites was synthesized via a simple one pot hydrothermal method. The as-obtained samples were investigated using various techniques, as follows: scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and specific surface area (BET) vibrating sample magnetometer (VSM), among others. The sonocatalytic activities of the catalysts were tested according to the oxidation for the removal of methylene blue (MB), methyl orange (MO), and rhodamine B (RhB) under ultrasonic irradiation. The optimal conditions including the irradiation time, pH, dye concentration, catalyst dosage, and ultrasonic intensity are 60 min, 11, 50 mg/L, 1.00 g/L, and 40 W/m2, respectively. The MGZ@SiO2 showed the higher enhanced sonocatalytic degradation from among the three dyes; furthermore, the sonocatalytic-degradation mechanism is discussed. This study shows that the MGZ@SiO2 can be applied as a novel-design catalyst for the removal of organic pollutants from aqueous solutions.  相似文献   

9.
CO2-expanded organic solvent is a kind of important fluid medium and has broad applications in chemical industry, environmental protection and other fields. Ultrasonic cavitation in gas expanded liquids (GXLs) is conducive to enhancing mass transfer and producing many exciting phenomena. In this paper, the ultrasonic cavitations and streaming in the saturated CO2-expanded liquid N, N-dimethylformamide (DMF) at 4.2 MPa and 5.2 MPa are observed by a high-speed camera. The cavitation intensity and time trace of pressure pulses are recorded using a PZT hydrophone. The influences of gas–liquid equilibrium pressure and ultrasonic power on the cluster dynamics of transient and stable cavitation are examined. The excess molar enthalpies required for CO2 dissociation from DMF are calculated by Peng-Robinson equations of state and the change of surface free energy of CO2-expanded DMF is predicted. The results show that the excess enthalpy of the mixture is one of the key factors to control ultrasonic cavitation at high pressurized conditions, while the surface tension is the key factor for low pressure. As the increase of applied ultrasonic power, the formation and collapsing frequency of bubble clusters increases, and the amplitude and cyclic frequency of pressure pulse are enhanced. The transient cavitation intensity increases as it reaches a maximum value at a certain ultrasonic power and then decreases. The change trends of stable cavitation intensity under different pressures are basically same. It can be concluded from the evidence that ultrasonic cavitation in CO2-expanded DMF is affected by the combined effect of compression and substitution: compression depresses the nucleation and growth of bubbles, while the high solubility of CO2 in DMF is conducive to the generation of bubbles in cavitation.  相似文献   

10.
Ga-doped SnO2 with different molar ratios of Ga/Sn (1, 2, 3, and 4 %) was prepared by a facile co-precipitation route. The photocatalysts prepared were characterized by N2 adsorption–desorption measurements, X-ray diffraction, UV/Vis diffuse reflectance spectroscopy, and scanning electron microscope. The separation efficiency of photo-generated charge was studied using benzoquinone as scavenger. Hydroxyl radicals produced during photocatalytic process were detected by a terephthalic acid photoluminescence probing technique. Doping Ga3+ into SnO2 can greatly enhance the separation efficiency of photo-induced charge and the formation rate of hydroxyl radicals. The superoxide radical is the main active species during the photocatalytic process. The catalytic activity of photocatalysts for decolorization of methyl orange in aqueous solution was investigated. Among the photocatalysts prepared, Ga-doped SnO2 with 3 %Ga possesses the best photocatalytic activity and the underlying mechanism is suggested.  相似文献   

11.
The sonochemical reduction of MnO4 to MnO2 in aqueous solutions was investigated as a function of alcohol concentration under Ar. The rate of MnO4 reduction initially decreased with increasing alcohol concentration, and then increased when the alcohol concentration was increased further. The concentrations at which the reduction rates were minimum depended on the hydrophobic properties of the added alcohols under ultrasonic irradiation. At low concentrations, the alcohols acted as OH radical scavengers; at high concentrations, they acted as reductant precursors: Rab, formed by abstraction reactions of the alcohols with sonochemically formed OH radicals or H atoms, and Rpy, formed by alcohol pyrolysis under ultrasonic irradiation. The results suggest that the reactivity order of the sonochemically formed reducing species with MnO4 at pH 7–9 is the sum of H2O2 and H > Rpy > Rab. The peak wavelengths of MnO2 colloidal solutions formed at high 1-butanol concentrations shifted to shorter wavelengths, suggesting the formation of small particles at high 1-butanol concentrations. The rates of sonochemical reduction of MnO2 to Mn2+ in the presence of 1-butanol were slower than that in the absence of 1-butanol, because the sonochemical formation of H2O2 and H, which act as reductants, was suppressed by 1-butanol in aqueous solutions.  相似文献   

12.
Currently, the polluted wastewater discharged by industry accounts for the major part of polluted bodies of water. As one of the industrial wastewaters, dye wastewater is characterized by high toxicity, wide pollution, and difficulty in decolorization degradation. In this paper, a novel composite nanomaterial catalyst of silver was prepared by using Angelica sinensis polysaccharide (ASP) as a reducing and stabilizing agent. And the optimum reaction conditions explored are VAgNO3 = 5 mL (300 mM) and vASP = 7% (w/v) for 6 h at 90 °C. In addition, the ASP-Ag nanocatalyst was characterized by several techniques. The results demonstrated that ASP-Ag nanoparticles were successfully synthesized. Degradation rate, which provides a numerical visualization of the percentage reduction in pollutant concentration. With the wrapping of ASP, the ultrasonic catalytic degradation rates of different organic dyes including rhodamine B (RB), methylene blue (MB), and methyl orange (MO) were from 88.2%, 88.7%, and 85.2% to 96.1%, 95.2% and 93.5% at room temperature, respectively. After the experiments, when cdyes = 10 mg/L, the highest degradation rate can be observed under cAPS-AgNPs = 10 mg/L with the most powerful cavitation frequency f = 59 kHz. The effect of ultrasonic frequency on the acoustic pressure distribution in the reactor was investigated by using COMSOL Multiphysis@ software to propose the mechanism of ultrasonic degradation and the mechanism was confirmed by OH radical trapping experiments. It indicates that OH produced by the ultrasonic cavitation effect plays a determinant role in the degradation. And then, the intermediate products of the dye degradation process were analyzed by gas chromatography and mass spectrometry (GC–MS), and the possible degradation processes of dyes were proposed. The resulting products of degradation are SO42−, NH4+, NO3, N2, CO2 and H2O. Finally, the recycling degradation experiments showed that catalyst maintains a high degradation rate within reusing 5 cycles. Thus, this catalyst is highly efficient and recyclable.  相似文献   

13.
An ultrasonic condition assisted phase transfer catalyzed radical polymerization of methyl methacrylate was investigated in an ethyl acetate/water two phase system at 60 ± 1 °C and 25 kHz, 300 W under inert atmosphere. The influence of monomer, initiator, catalyst and temperature, volume fraction of aqueous phase on the rate of polymerization was examined in detail. The reaction order was found to be unity for monomer, initiator and catalyst. Generally, the reaction rate was relatively fast in two phase system, when a catalytic amount of phase transfer catalyst was used. The combined approach, use of ultrasonic and PTC condition was significantly enhances the rate of polymerization. An ultrasonic and phase transfer catalyzed radical polymerization of methyl methacrylate has shown about three fold enhancements in the rate compared with silent polymerization of MMA using cetyltrimethylammonium bromide as PTC. The resultant kinetics was evaluated with silent polymerization and an important feature was discussed. The activation energy and other thermodynamic parameters were computed. Based on the obtained results an appropriate radical mechanism has been derived. TGA showed the polymer was stable up to 150 °C. The FT-IR and DSC analysis validates the atactic nature of the obtained polymer. The XRD pattern reveals the amorphous nature of polymer was dominated.  相似文献   

14.
Hydroxyl radical (OH) scavengers are commonly used in sonochemistry to probe the site and nature of reaction in aqueous cavitational systems. Using pulsed wave (PW) ultrasound with comparative sonochemistry we evaluated the performance of OH scavengers (i.e., formic acid, carbonic acid, terephthalic acid/terephthalate, iodide, methanesulfonate, benzenesulfonate, and acetic acid/acetate) in a sonochemical system to determine which OH scavengers react only in bulk solution and which OH scavengers interact with cavitation bubbles. The ability of each scavenger to interact with cavitation bubbles was assessed by comparing the pulse enhancement (PE) of 10 μM of a probe compound, carbamazepine (CBZ), in the presence and absence of a scavenger. Based on PE results, acetic acid/acetate appears to scavenge OH in bulk solution, and not interact with cavitation bubbles. Methanesulfonate acts as reaction promoter, increasing rather than inhibiting the degradation of CBZ. For formic acid, carbonic acid, terephthalic acid/terephthalate, benzenesulfonate, and iodide, the PE was significantly decreased compared to in the absence of the scavenger. These scavengers not only quench OH in bulk solution but also affect the cavity interface. The robustness of acetic acid/acetate as a bulk OH scavenger was validated for pH values between 3.5 and 8.9 and acetic acid/acetate concentrations from 0.5 to 0.1 M.  相似文献   

15.
Various active chemical species such as hydroxyl radicals, oxygen radical, hydrogen peroxide and ozone etc. can be produced by pulsed discharge. These active species can remove organic pollutants from the aqueous phase effectively. In present work pulsed discharge was formed on the pinhole of an insulating plate which was inserted between two plate electrodes. The characteristic of methyl orange decoloration by the discharge was investigated. The results of experimentation showed that peak voltage, pulsed frequency, initial solution conductivity and gas species impact the decoloration rate of the methyl orange (MO) significantly. The decoloration rate of MO solution is increased with increasing of the peak voltage, pulsed frequency, and decreasing initial solution conductivity. When the MO solution was treated with different gases bubbling, different decoloration rate was obtained and the order of decoloration rate is: oxygen > air > nitrogen.  相似文献   

16.
The main goal of this work is to develop a novel and environmental-friendly technology for cotton bleaching with reduced processing costs. This work exploits a combined laccase–hydrogen peroxide process assisted by ultrasound. For this purpose, specific reactors were studied, namely ultrasonic power generator type K8 (850 kHz) and ultrasonic bath equipment Ultrasonic cleaner USC600TH (45 kHz). The optimal operating conditions for bleaching were chosen considering the highest levels of hydroxyl radical production and the lowest energy input. The capacity to produce hydroxyl radicals by hydrodynamic cavitation was also assessed in two homogenizers, EmulsiFlex®-C3 and APV-2000. Laccase nanoemulsions were produced by high pressure homogenization using BSA (bovine serum albumin) as emulsifier. The bleaching efficiency of these formulations was tested and the results showed higher whiteness values when compared to free laccase. The combination of laccase–hydrogen peroxide process with ultrasound energy produced higher whiteness levels than those obtained by conventional methods. The amount of hydrogen peroxide was reduced 50% as well as the energy consumption in terms of temperature (reduction of 40 °C) and operating time (reduction of 90 min).  相似文献   

17.
The sonication of aqueous solution generates microscopic cavitation bubbles that may growth and violently collapse to produce highly reactive species (i.e. OH, HO2 and H2O2), hydrogen and emit light, sonoluminescence. The bubble size is a key parameter that influences the chemical activity of the system. This wok aims to study theoretically the size of active bubbles for the production of hydrogen in ultrasonic cavitation field in water using a single bubble sonochemistry model. The effect of several parameters such as frequency of ultrasound, acoustic intensity and liquid temperature on the range of sonochemically active bubbles for the production of hydrogen was clarified. The numerical simulation results showed that the size of active bubbles is an interval which includes an optimum value at which the production rate of H2 is maximal. It was shown that the range of ambient radius for an active bubble as well as the optimum bubble radius for the production of hydrogen increased with increasing acoustic intensity and decreased with increasing ultrasound frequency and bulk liquid temperature. It was found that the range of ambient bubble radius dependence of the operational conditions followed the same trend as those reported experimentally for sonoluminescing bubbles. Comparison with literature data showed a good agreement between the theoretical determined optimum bubble sizes for the production of hydrogen and the experimental reported sizes for sonoluminescing bubbles.  相似文献   

18.
A series of CuO/CeO2 catalysts with different Cu-Ce compositions were synthesized by co-precipitation method and characterized by X-ray diffraction, H2-TPR, CO-TPD, SEM and X-ray photoelectron spectroscopy (XPS) techniques. The effects of Cu-Ce composition and water vapor on the catalytic properties for the selective CO oxidation in the hydrogen-rich gas were investigated. The results indicated that CuO (10%)/CeO2 catalyst remained the maximum CO conversion and selectivity at 140 and 160 °C, while the performance of CuO/CeO2 catalysts deteriorated with the CuO molar ratio further increased. The interfacial CuO and CeO2 interaction and synergistic effect enhanced the redox properties of CuO/CeO2 catalyst and the highly dispersed copper species were proposed as the active sites for the selective CO oxidation. The blockage of catalytic active sites by absorbed water and the formation of CO-H2O surface complexes reduced the activity of CuO (10%)/CeO2 catalyst. The decreasing of surface lattice oxygen and absorbed oxygen species and the agglomeration of copper particles were the plausible interpretations for the deactivation of CuO (10%)/CeO2 catalyst.  相似文献   

19.
The CeO2/TiO2, SnO2/TiO2 and ZrO2/TiO2 composites were prepared by dispersing various nano-sized oxides (CeO2, SnO2, ZrO2 and TiO2) with ultrasound and mixing TiO2 with CeO2, SnO2 and ZrO2, respectively, in boiling water in a molar ratio of 4:1, followed by calcining temperature 500 °C for 60 min. Then a series of sonocatalytic degradation experiments were carried out under ultrasonic irradiation in the presence of CeO2/TiO2, SnO2/TiO2 and ZrO2/TiO2 composites and nano-sized TiO2 powder. Also, the influences of heat-treatment temperature and heat-treatment time on the sonocatalytic activities of CeO2/TiO2, SnO2/TiO2 and ZrO2/TiO2 composites, and of irradiation time and solution acidity on the sonocatalytic degradation of Acid Red B were investigated by UV–vis spectra. It was found that the sonocatalytic degradation of Acid Red B shows significant variation in rate and ratio that decreases in order: CeO2/TiO2 > SnO2/TiO2 > TiO2 > ZrO2/TiO2 > SnO2 > CeO2 > ZrO2, and the corresponding ratios of Acid Red B in aqueous solution are 91.32%, 67.41%, 65.26%, 41.67%, 28.34%, 26.75% and 23.33%, respectively. And that the degradation ratio is only 16.67% under onefold ultrasonic irradiation. Because of the good degradation efficiency, this method may be an advisable choice for the treatment of non- or low-transparent wastewaters in the future.  相似文献   

20.
A system of ultrasound radiation coupled with Zn0 was applied to degrade diclofenac. The effects of initial pH, dosage of Zn0 and ultrasound density were investigated. To further explore the mechanism of the microcosmic reaction, the fresh and used Zn0 powders were characterized by SEM, XRD and XPS. Radical scavengers were used to determine the oxidation performance of strong oxidizing free radicals on diclofenac, including hydroxyl radicals and superoxide radicals. The results showed that the optimum removal of diclofenac reached to over 85% at pH of 2.0 in 15 min, with Zn0 dosage of 0.1 g/L and ultrasound density of 0.6 W/cm3. TOC removal of 72.6% in 15 min and dechlorination efficiency of diclofenac reached 70% in 30 min. Characterization results showed that a ZnO membrane was generated on the surface of Zn particles after use. According to the mass spectrometry results, several possible pathways of diclofenac degradation were proposed, and most diclofenac was turned into micro-molecules or CO2 finally. The synergistic effect of US/Zn0 in the reactions led to a proposed degradation mechanism in which zinc could directly attack the target contaminant diclofenac because of its good reducibility with the auxiliary functions of ultrasonic irradiation, mechanical shearing and free radical oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号