首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The ultrasonic formation of stable emulsions of a bioactive material, black seed oil, in skim milk was investigated. The incorporation of 7% of black seed oil in pasteurised homogenized skim milk (PHSM) using 20 kHz high intensity ultrasound was successfully achieved. The effect of sonication time and acoustic power on the emulsion stability was studied. A minimum process time of 8 min at an applied acoustic power of 100 W was sufficient to produce emulsion droplets stable for at least 8 days upon storage at 4 ± 2 °C, which was confirmed through creaming stability, particle size, rheology and color analysis. Partially denatured whey proteins may provide stability to the emulsion droplets and in addition to the cavitation effects of ultrasound are responsible for the production of smaller sized emulsion droplets.  相似文献   

2.
Acoustic cavitation energy distributions were investigated for various frequencies such as 35, 72, 110 and 170 kHz in a large-scale sonoreactor. The energy analyses were conducted in three-dimensions and the highest and most stable cavitation energy distribution was obtained not in 35 kHz but in 72 kHz. However, the half-cavitation-energy distance was larger in the case of 35 kHz ultrasound than in the case of 72 kHz, demonstrating that cavitation energy for one cycle was higher for a lower frequency. This discrepancy was due to the large surface area of the cavitation-energy-meter probe. In addition, 110 and 170 kHz ultrasound showed a very low and poor cavitation energy distribution. Therefore larger input power was required to optimize the use of higher frequency ultrasound in the sonoreactor with long-irradiation distance. The relationship between cavitation energy and sonochemical efficiency using potassium iodide (KI) dosimetry was best fitted quadratically. From 7.77 × 10?10 to 4.42 × 10?9 mol/J of sonochemical efficiency was evaluated for the cavitation energy from 31.76 to 103. 67 W. In addition, the cavitation energy attenuation was estimated under the assumption that cavitation energy measured in this study would be equivalent to sound intensity, resulting in 0.10, 0.18 and 2.44 m?1 of the attenuation coefficient (α) for 35, 72 and 110 kHz, respectively. Furthermore, α/(frequency)2 was not constant, as some previous studies have suggested.  相似文献   

3.
Acoustic droplet vaporization (ADV) of perfluorocarbon emulsions has been explored for diagnostic and therapeutic applications. Previous studies have demonstrated that vaporization of a liquid droplet results in a gas microbubble with a diameter 5–6 times larger than the initial droplet diameter. The expansion factor can increase to a factor of 10 in gassy fluids as a result of air diffusing from the surrounding fluid into the microbubble. This study investigates the potential of this process to serve as an ultrasound-mediated gas scavenging technology. Perfluoropentane droplets diluted in phosphate-buffered saline (PBS) were insonified by a 2 MHz transducer at peak rarefactional pressures lower than and greater than the ADV pressure amplitude threshold in an in vitro flow phantom. The change in dissolved oxygen (DO) of the PBS before and after ADV was measured. A numerical model of gas scavenging, based on conservation of mass and equal partial pressures of gases at equilibrium, was developed. At insonation pressures exceeding the ADV threshold, the DO of air-saturated PBS decreased with increasing insonation pressures, dropping as low as 25% of air saturation within 20 s. The decrease in DO of the PBS during ADV was dependent on the volumetric size distribution of the droplets and the fraction of droplets transitioned during ultrasound exposure. Numerically predicted changes in DO from the model agreed with the experimentally measured DO, indicating that concentration gradients can explain this phenomenon. Using computationally modified droplet size distributions that would be suitable for in vivo applications, the DO of the PBS was found to decrease with increasing concentrations. This study demonstrates that ADV can significantly decrease the DO in an aqueous fluid, which may have direct therapeutic applications and should be considered for ADV-based diagnostic or therapeutic applications.  相似文献   

4.
The ultrasonic fractionation of milk fat in whole milk to fractions with distinct particle size distributions was demonstrated using a stage-based ultrasound-enhanced gravity separation protocol. Firstly, a single stage ultrasound gravity separation was characterised after various sonication durations (5–20 min) with a mass balance, where defined volume partitions were removed across the height of the separation vessel to determine the fat content and size distribution of fat droplets. Subsequent trials using ultrasound-enhanced gravity separation were carried out in three consecutive stages. Each stage consisted of 5 min sonication, with single and dual transducer configurations at 1 MHz and 2 MHz, followed by aliquot collection for particle size characterisation of the formed layers located at the bottom and top of the vessel. After each sonication stage, gentle removal of the separated fat layer located at the top was performed.Results indicated that ultrasound promoted the formation of a gradient of vertically increasing fat concentration and particle size across the height of the separation vessel, which became more pronounced with extended sonication time. Ultrasound-enhanced fractionation provided fat enriched fractions located at the top of the vessel of up to 13 ± 1% (w/v) with larger globules present in the particle size distributions. In contrast, semi-skim milk fractions located at the bottom of the vessel as low as 1.2 ± 0.01% (w/v) could be produced, containing proportionally smaller sized fat globules. Particle size differentiation was enhanced at higher ultrasound energy input (up to 347 W/L). In particular, dual transducer after three-stage operation at maximum energy input provided highest mean particle size differentiation with up to 0.9 μm reduction in the semi-skim fractions. Higher frequency ultrasound at 2 MHz was more effective in manipulating smaller sized fat globules retained in the later stages of skimming than 1 MHz. While 2 MHz ultrasound removed 59 ± 2% of the fat contained in the initial sample, only 47 ± 2% was removed with 1 MHz after 3 ultrasound-assisted fractionation stages.  相似文献   

5.
In the present investigation, the operating efficiency of a bench-top air-driven microfluidizer has been compared to that of a bench-top high power ultrasound horn in the production of pharmaceutical grade nanoemulsions using aspirin as a model drug. The influence of important process variables as well as the pre-homogenization and drug loading on the resultant mean droplet diameter and size distribution of emulsion droplets was studied in an oil-in-water nanoemulsion incorporated with a model drug aspirin. Results obtained show that both the emulsification methods were capable of producing very fine nanoemulsions containing aspirin with the minimum droplet size ranging from 150 to 170 nm. In case of using the microfluidizer, it has been observed that the size of the emulsion droplets obtained was almost independent of the applied microfluidization pressure (200–600 bar) and the number of passes (up to 10 passes) while the pre-homogenization and drug loading had a marginal effect in increasing the droplet size. Whereas, in the case of ultrasound emulsification, the droplet size was generally decreased with an increase in sonication amplitude (50–70%) and period of sonication but the resultant emulsion was found to be dependent on the pre-homogenization and drug loading. The STEM microscopic observations illustrated that the optimized formulations obtained using ultrasound cavitation technique are comparable to microfluidized emulsions. These comparative results demonstrated that ultrasound cavitation is a relatively energy-efficient yet promising method of pharmaceutical nanoemulsions as compared to microfluidizer although the means used to generate the nanoemulsions are different.  相似文献   

6.
In atherosclerotic inducement in animal models, the conventionally used balloon injury is invasive, produces excessive vessel injuries at unpredictable locations and is inconvenient in arterioles. Fortunately, cavitation erosion, which plays an important role in therapeutic ultrasound in blood vessels, has the potential to induce atherosclerosis noninvasively at predictable sites. In this study, precise spatial control of cavitation erosion for superficial lesions in a vessel phantom was realised by using an ultrasonic standing wave (USW) with the participation of cavitation nuclei and medium-intensity ultrasound pulses. The superficial vessel erosions were restricted between adjacent pressure nodes, which were 0.87 mm apart in the USW field of 1 MHz. The erosion positions could be shifted along the vessel by nodal modulation under a submillimetre-scale accuracy without moving the ultrasound transducers. Moreover, the cavitation erosion of the proximal or distal wall could be determined by the types of cavitation nuclei and their corresponding cavitation pulses, i.e., phase-change microbubbles with cavitation pulses of 5 MHz and SonoVue microbubbles with cavitation pulses of 1 MHz. Effects of acoustic parameters of the cavitation pulses on the cavitation erosions were investigated. The flow conditions in the experiments were considered and discussed. Compared to only using travelling waves, the proposed method in this paper improves the controllability of the cavitation erosion and reduces the erosion depth, providing a more suitable approach for vessel endothelial injury while avoiding haemorrhage.  相似文献   

7.
We here suggest a novel and straightforward approach for liter-scale ultrasound particle manipulation standing wave systems to guide system design in terms of frequency and acoustic power for operating in either cavitation or non-cavitation regimes for ultrasound standing wave systems, using the sonochemiluminescent chemical luminol. We show that this method offers a simple way of in situ determination of the cavitation threshold for selected separation vessel geometry. Since the pressure field is system specific the cavitation threshold is system specific (for the threshold parameter range). In this study we discuss cavitation effects and also measure one implication of cavitation for the application of milk fat separation, the degree of milk fat lipid oxidation by headspace volatile measurements. For the evaluated vessel, 2 MHz as opposed to 1 MHz operation enabled operation in non-cavitation or low cavitation conditions as measured by the luminol intensity threshold method. In all cases the lipid oxidation derived volatiles were below the human sensory detection level. Ultrasound treatment did not significantly influence the oxidative changes in milk for either 1 MHz (dose of 46 kJ/L and 464 kJ/L) or 2 MHz (dose of 37 kJ/L and 373 kJ/L) operation.  相似文献   

8.
Pulsed ultrasound was used to disperse a biphasic mixture of CO2/H2O in a 1 dm3 high-pressure reactor at 30 °C/80 bar. A view cell positioned in-line with the sonic vessel allowed observation of a turbid emulsion which lasted approximately 30 min after ceasing sonication. Within the ultrasound reactor, simultaneous CO2-continuous and H2O-continuous environments were identified. The hydrolysis of benzoyl chloride was employed to show that at similar power intensities, comparable initial rates (1.6 ± 0.3 × 10–3 s–1 at 95 W cm–2) were obtained with those reported for a 87 cm3 reactor (1.8 ± 0.2 × 10–3 s–1 at 105 W cm–2), demonstrating the conservation of the physical effects of ultrasound in high-pressure systems (emulsification induced by the action of acoustic forces near an interface). A comparison of benzoyl chloride hydrolysis rates and benzaldehyde mass transport relative to the non-sonicated, ‘silent’ cases confirmed that the application of ultrasound achieved reaction rates which were over 200 times faster, by reducing the mass transport resistance between CO2 and H2O. The versatility of the system was further demonstrated by ultrasound-induced hydrolysis in the presence of the polysorbate surfactant, Tween, which formed a more uniform CO2/H2O emulsion that significantly increased benzoyl chloride hydrolysis rates. Finally, pulse rate was employed as a means of slowing down the rate of hydrolysis, further illustrating how ultrasound can be used as a valuable tool for controlling reactions in CO2/H2O solvent mixtures.  相似文献   

9.
In this study, biodegradable polymeric nanocapsules were prepared by sequential deposition of food-grade polyelectrolytes through the self-assembling process onto the oil (medium chain triglycerides) droplets enriched with curcumin (lipophilic bioactive compound). Optimum conditions were used to prepare ultrasound-assisted nanoemulsions stabilized by octenyl-succinic-anhydride (OSA)-modified starch. Negatively charged droplets (−39.4 ± 1.84 mV) of these nanoemulsions, having a diameter of 142.7 ± 0.85 nm were used as templates for the fabrication of nanocapsules. Concentrations of layer-forming cationic (chitosan) and anionic (carboxymethylcellulose) biopolymers were optimized based on the mean droplet/particle diameter (MDD/MPD), polydispersity index (PDI) and net charge on the droplets/capsules. Prepared core–shell structures or nanocapsules, having MPD of 159.85 ± 0.92 nm, were characterized by laser diffraction (DLS), ζ-potential (ZP), atomic force microscopy (AFM), transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM). Furthermore, physical stability of curcumin-loaded nanocapsules in suspension was determined and compared at different storage temperatures. This study may provide information regarding the formation of ultrasound-assisted polymeric nanocapsules from the nanoemulsion templates which could be helpful in the development of delivery systems for lipophilic food bioactives.  相似文献   

10.
Blood vessel is one of the most important targets encountered during focused ultrasound (FU) therapy. The lasting high temperature caused by continuous FU can result in structural modification of small vessel. For the vessel with a diameter larger than 2 mm, convective cooling can significantly weaken the thermal effect of FU. Meanwhile, the continued presence of ultrasound will cause repetitive cavitation and acoustic microstreaming, making comprehension of continuous wave induced cavitation effect in large vessels necessary. The Sonoluminescence (SL) method, mechanical damage observation and high-speed camera were used in this study to investigate the combination effect of ultrasound contrast agents (UCAs) and continuous FU in large phantom vessels with a diameter of 10 mm without consideration of thermal effect. When the focus was positioned at the proximal wall, cylindrical hole along the acoustic axis opposite the ultrasound wave propagation direction was observed at the input power equal to or greater than 50 W. When the focus was located at the distal wall, only small tunnels can be found. The place where the cylindrical hole formed was corresponding to where bubbles gathered and emitted brilliant light near the wall. Without UCAs neither such bright SL nor cylindrical hole can be found. However, the UCAs concentration had little influence on the SL distribution and the length of cylindrical hole. The SL intensity near the proximal vessel wall and the length of the cylindrical hole both increased with the input power. It is suggested that these findings need to be considered in the large vessel therapy and UCAs usage.  相似文献   

11.
The protein conformation of soymilk is the key to affecting the instant solubility of soymilk flour. This study aimed to evaluate the effect of cavitation jet treatment time (0, 2, 4, 6, and 8 min) on the instant solubility of soymilk flour based on the conformational changes of protein in soymilk. The results showed that the cavitation jet treatment for 0–4 min significantly unfolded the protein structure of soymilk and increased the content of soluble protein, which reduced the particle size and increased the electrostatic repulsion and the viscosity of soymilk. This was beneficial for soymilk droplets fully atomized and repolymerized in the spray drying tower, forming soymilk flour particles with large size, smooth surface, and uniform distribution. When the cavitation jet treatment time was 4 min, the wettability (from 127.3 ± 2.5 s to 84.7 ± 2.1 s), dispersibility (from 70.0 ± 2.0 s to 55.7 ± 2.1 s), and solubility (from 56.54% to 78.10%) of soymilk flour were significantly improved. However, when the time of the cavitation jet treatment was extended to 8 min, the protein of soymilk aggregated and the stability of soymilk decreased, which reduced the particle size and hurt the surface characteristics of soymilk flour after spray drying. It resulted in a decrease in the instant solubility of soymilk flour. Therefore, the cavitation jet treatment with proper time increases the instant solubility of soymilk flour by improving the protein conformation of soymilk.  相似文献   

12.
Food technologists are always looking to improve the functional properties of proteins. In this sense, in last years ultrasound has been used to improve some functional properties. For this reason, and considering that jumbo squid is an important fishery in northwest Mexico, the purpose of this research was to determine the effect of pulsed ultrasound on the physicochemical characteristics and emulsifying properties of squid (Dosidicus gigas) mantle proteins. Pulsed ultrasound (20 kHz, 20, and 40% amplitude) was applied for 30, 60, and 90 s to a protein extract prepared from giant squid mantle causing an increase (p < 0.05) in surface hydrophobicity (So) from 108.4 ± 1.4 to 239.1 ± 2.4 after application of pulsed ultrasound at 40% of amplitude for 90 s. The electrophoretic profile and the total and reactive sulfhydryl contents were not affected (p  0.05) by the ultrasound treatment. The emulsifying ability of the protein solution was improved (p < 0.05), whereas the Emulsifier Activity Index (EAI) varied from123.67 ± 5.52 m2/g for the control and increased up to 217.7 ± 3.8 m2/g after application of the ultrasound. The Stability Emulsifier Index (EEI) was improved at 40% of amplitude by 60 and 90 s. The results suggested that pulsed ultrasound used as pretreatment induced conformational changes in giant squid proteins, which improved the interfacial association between protein-oil phases, thus contributing to the improvement of their emulsifient properties.  相似文献   

13.
Double-emulsion droplets may be assembled into highly concentric shells using a uniform AC electric field to induce dipole/dipole interactions. The resulting force centers the inner droplet with respect to the outer shell if the outer droplet has a higher dielectric constant than the ambient, suspending liquid. The dielectric constant of the inner droplet does not influence this condition. Applying an electric field >104 Vrms/m achieves centering of approximately 3–6 mm diameter droplets suspended in ~10 centipoise liquids within ~60 s. If the outer shell is electrically conductive, the effect depends strongly on frequency. In the case of the monomer-containing liquids requisite to forming foam shells for laser target fabrication, the electrical field frequency must be ~10 MHz or higher. Because of very stringent requirements imposed on the concentricity and sphericity of laser targets, electric field induced droplet distortion must be minimized. Consequently, the liquid constituents must be matched in density to ~0.1%.  相似文献   

14.
《Ultrasonics》2005,43(2):69-77
The purpose of this study was to investigate practical, safe, easy-to-use, non-cytotoxic, and reliable parameters to apply to an ultrasound (US) naked gene therapy system. The ultrasound pressure at the point of cell exposure was measured using a calibrated hydrophone and the intensity calculated. An acoustic power meter calibrated using a hydrophone was used to measure the power of the transducer. Four cell types were exposed to US with different exposure times and intensities. Fluorescent microscopy, spectrophotometry, scanning electron microscope, laser scanning confocal microscopy, flow cytometry and histogram analysis were used to evaluate the results of the study. The plasmid of green fluorescent protein (GFP) served as the reporter gene. The energy accumulation E in US gene delivery for 90% cell survival was defined as the optimal parameters (E = 3.56 ± 0.06), and at 80% cell survival was defined as the damage threshold (E = 59.67 ± 3.54). US safely delivered GFP into S180 cells (35.1 kHz) at these optimal parameters without obvious damage or cytotoxity in vitro. Exposed cell function was proved normal in vivo. The transfection rate was 35.83 ± 2.53% (n = 6) in viable cells, corresponding to 90.17 ± 1.47% (n = 6) cell viability. The intensity of GFP expression showed a higher fluorescent peak in the group of adeno-associated virus GFP vector (AVV-GFP) than in the control group (P < 0.001). The effect of US gene delivery and cell viability correlated as a fifth order polynomial with US intensity and exposure time. With optimal parameters, US can safely deliver naked a gene into a cell without damage to cell function. Both optimal uptake and expression of gene depend on the energy E at 90% cell survival. E can be applied as a control factor for bioeffects when combined with other parameters. Stable caviation results in optimal parameters for gene delivery and the transient caviation may cause cell damage, which will bring about a sharp rise of permeabilization. The results may be applied to the development of a novel clinical gene therapeutic system.  相似文献   

15.
Electrodeposited Ni–W alloy assisted by high-intensity ultrasound was evaluated considering the nominal power effect on the anticorrosive property. Temperature profiles demonstrated that using a nominal power of 400 W, the electrolytic bath at 30 °C reached values of 39 ± 1 °C. The maximum acoustic power corresponded to 6.7% of the nominal power value at 400 W. Increasing the nominal power from 0 to 400 W; the Ni content decreased from 85.3 to 75.2 wt%, and the W content increased from 15.1 to 25.1 wt%. The deposited coating at 200 W and 300 W had a smooth, homogeneous, and uniform surface. At 400 W, the acoustic cavitation promoted erosion, affecting the coating surface. X-ray diffraction analysis indicated that the nominal power of 200 W promoted electrodeposition of the Ni17W3 structure with the plane (1 1 1) as a preferred orientation. The crystallite size decreased for the planes (1 1 1) and (2 0 0) when increased nominal power from 100 to 200 W. The optimum condition for the improved corrosion resistance occurred with the nominal power of 200 W, providing a polarization resistance of 23.42 kΩ cm2.  相似文献   

16.
In barium borate (BBO) crystals, sodium and potassium ions, inherited due to the preparation technique, are dominant charge carriers. The conductivity between layers is higher; the conductivity activation energy and the conductivity at 350 °C being equal to 1.01±0.05 eV and (1.3±0.2)×10−8 S/cm, respectively. The conductivity activation energy and the conductivity at 350 °C along the channels are equal to 1.13±0.05 eV and to (4±0.2)×10−9 S/cm, respectively. Relative static permittivity is almost isotropic, and equal to 7.65±0.05. Upon storing of cesium–lithium borate (CLBO) crystals, pre-heating to 600 °C eliminates the influence of surface humidity. At 500 K, the ionic conductivity ranges from 4×10−12 to 2×10−10 S/cm; the conductivity activation energy ranges from 1.01 to 1.17 eV. Relative static permittivity is equal to 7.4±0.3.  相似文献   

17.
We synthesized oxygen and paclitaxel (PTX) loaded lipid microbubbles (OPLMBs) for ultrasound mediated combination therapy in hypoxic ovarian cancer cells. Our experiments successfully demonstrated that ultrasound induced OPLMBs destruction significantly enhanced the local oxygen release. We also demonstrated that OPLMBs in combination with ultrasound (300 kHz, 0.5 W/cm2, 15 s) yielded anti-proliferative activities of 52.8 ± 2.75% and cell apoptosis ratio of 35.25 ± 0.17% in hypoxic cells at 24 h after the treatment, superior to other treatment groups such as PTX only and PTX-loaded MBs (PLMBs) with or without ultrasound mediation. RT-PCR and Western blot tests further confirmed the reduced expression of HIF-1α and MDR-1/P-gp after ultrasound mediation of OPLMBs. Our experiment suggests that ultrasound mediation of oxygen and drug-loaded MBs may be a useful method to overcome chemoresistance in the hypoxic ovarian cancer cells.  相似文献   

18.
In this study, the effects of ultrasound with different ultrasonic frequencies on the properties of sodium alginate (ALG) were investigated, which were characterized by the means of the multi-angle laser light scattering photometer analysis (GPC-MALLS), rheological analysis, circular dichroism (CD) spectrometer and scanning electron microscope (SEM). It showed that the molecular weight (Mw) and molecular number (Mn) of the untreated ALG was 1.927 × 105 g/mol and 4.852 × 104 g/mol, respectively. The Mw of the ultrasound treated ALG was gradually increased from 3.50 × 104 g/mol to 7.34 × 104 g/mol while the Mn of ALG was increased and then decreased with the increase of the ultrasonic frequency. The maximum value of Mn was 9.988 × 104 g/mol when the ALG was treated by ultrasound at 40 kHz. It indicated that ultrasound could induce ALG degradation and rearrangement. The number of the large molecules and small molecules of ALG was changed by ultrasound. The value of dn/dc suggested that the ultrasound could enhance the stability of ALG. Furthermore, it was found that ALG treated by ultrasound at 50 kHz tended to be closer to a Newtonian behavior, while the untreated and treated ALG solutions exhibited pseudoplastic behaviours. Moreover, CD spectra demonstrated that ultrasound could be used to improve the strength of the gel by changing the ratio of M/G, which showed that the minimum ratio of M/G of ALG treated at 135 kHz was 1.34. The gel-forming capacity of ALG was correlated with the content of G-blocks. It suggested that ALG treated by ultrasound at 135 kHz was stiffer in the process of forming gels. The morphology results indicated that ultrasound treatment of ALG at 135 kHz increased its hydrophobic interaction and interfacial activity. This study is important to explore the effect of ultrasound on ALG in improving the physical properties of ALG as food additives, enzyme and drug carriers.  相似文献   

19.
Enzymatic browning and microbial growth lead to quality losses in apple products. In the present study, fresh apple juice was thermosonicated using ultrasound in-bath (25 kHz, 30 min, 0.06 W cm−3) and ultrasound with-probe sonicator (20 kHz, 5 and 10 min, 0.30 W cm−3) at 20, 40 and 60 °C for inactivation of enzymes (polyphenolase, peroxidase and pectinmethylesterase) and microflora (total plate count, yeast and mold). Additionally, ascorbic acid, total phenolics, flavonoids, flavonols, pH, titratable acidity, °Brix and color values influenced by thermosonication were investigated. The highest inactivation of enzymes was obtained in ultrasound with-probe at 60 °C for 10 min, and the microbial population was completely inactivated at 60 °C. The retention of ascorbic acid, total phenolics, flavonoids and flavonols were significantly higher in ultrasound with-probe than ultrasound in-bath at 60 °C. These results indicated the usefulness of thermosonication for apple juice processing at low temperature, for enhanced inactivation of enzymes and microorganisms.  相似文献   

20.
Knowledge of the kinetics of gas bubble formation and evolution under cavitation conditions in molten alloys is important for the control casting defects such as porosity and dissolved hydrogen. Using in situ synchrotron X-ray radiography, we studied the dynamic behaviour of ultrasonic cavitation gas bubbles in a molten Al–10 wt% Cu alloy. The size distribution, average radius and growth rate of cavitation gas bubbles were quantified under an acoustic intensity of 800 W/cm2 and a maximum acoustic pressure of 4.5 MPa (45 atm). Bubbles exhibited a log-normal size distribution with an average radius of 15.3 ± 0.5 μm. Under applied sonication conditions the growth rate of bubble radius, R(t), followed a power law with a form of R(t) = αtβ, and α = 0.0021 & β = 0.89. The observed tendencies were discussed in relation to bubble growth mechanisms of Al alloy melts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号