首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have developed artificial neural network (ANN) based models for simulating two application examples of hydrodynamic cavitation (HC) namely, biomass pre-treatment to enhance biogas and degradation of organic pollutants in water. The first case reports data on influence of number of passes through HC reactor on bio-methane generation from bagasse. The second case reports data on influence of HC reactor scale on degradation of dichloroaniline (DCA). Similar to most of the HC based applications, the availability of experimental data for these two applications is rather limited. In this work a systematic methodology for developing ANN model is presented. The models were shown to describe the experimental data very well. The ANN models were then evaluated for their ability to interpolate and extrapolate. Despite the limited data, the ANN models were able to simulate and interpolate the data for two very different and complex HC applications very well. The extrapolated results of biomethane generation in terms of number of passes were consistent with the intuitive understanding. The extrapolated results in terms of elapsed time were however not consistent with the intuitive understanding. The ANN model was able to generate intuitively consistent extrapolated results for degradation of DCA in terms of number of passes as well as scale of HC reactor. The results will be useful for developing quantitative models of complex HC applications.  相似文献   

2.
In this paper, the decomposition of Rhodamine B (RhB) by hydrodynamic cavitation (HC), acoustic cavitation (AC) and the combination of these individual methods (HAC) have been investigated. The degradation of 20 L RhB aqueous solution was carried out in a self-designed HAC reactor, where hydrodynamic cavitation and acoustic cavitation could take place in the same space simultaneously. The effects of initial concentration, inlet pressure, solution temperature and ultrasonic power were studied and discussed. Obvious synergies were found in the HAC process. The combined method achieved the best conversion, and the synergistic effect in HAC was even up to 119% with the ultrasonic power of 220 W in a treatment time of 30 min. The time-independent synergistic factor based on rate constant was introduced and the maximum value reached 40% in the HAC system. Besides, the hybrid HAC method showed great superiority in energy efficiency at lower ultrasonic power (88–176 W). Therefore, HAC technology can be visualized as a promising method for wastewater treatment with good scale-up possibilities.  相似文献   

3.
This study investigates hydrodynamic performance of a novel pinned disc rotating generator of hydrodynamic cavitation in comparison with a serrated disc variant on a pilot-scale. Experimental results show that at a given rotational speed and liquid flow rate, the pinned disc generates more intense cavitation (i.e. lower cavitation number, higher volume fraction of vapor and higher amplitude of pressure fluctuations) than the serrated disc, while also consuming less energy per liquid pass (i.e., higher flow rate and pumping pressure difference of water at similar power consumption). Additionally, mechanical and chemical wastewater treatment performance of the novel cavitator was evaluated on an 800 L influent sample from a wastewater treatment plant. Mechanical effects resulted in a reduction of average particle size from 148 to 38 µm and increase of specific surface area, while the oxidation potential was confirmed by reduction of COD, TOC, and BOD up to 27, 23 and 30% in 60 cavitation passes, respectively. At optimal operating conditions and 30 cavitation passes, pinned disc cavitator had a 310% higher COD removal capacity while consuming 65% less energy per kg of COD removed than the serrated disc cavitator. Furthermore, the specific COD-reduction energy consumption of the pinned disc cavitator on the pilot scale is comparable to the best cases of lab-scale orifice and venturi devices operating at much lower wastewater processing capacity.  相似文献   

4.
Ammonia is a commonly used compound in the domestic and industrial fields. If ammonia found in wastewater after use is not treated, even at low concentrations it may cause toxic effects in the receiving environment. In this study, a hydrodynamic cavitation reactor (HDC) was designed with the aim of removing ammonia. The effect of parameters like different cavitation numbers, airflow, temperature and initial concentration on NH3 removal was researched. The potential of hydrodynamic cavitation for removal of volatile gases, like NH3, was assessed with the aid of two film theory mathematical equations. Experimental studies were performed at fixed pH = 11. Under the conditions of 0.12 cavitation number, 25 L/min airflow, 30 °C temperature and 2500 mg/L initial concentration, in 24 h 98.4% NH3 removal efficiency was achieved. With the same experimental conditions without any air, the HDC reactor provided 89.5% NH3 removal at the end of 24 h.The HDC reactor is very effective for the removal of volatile gases from wastewater and it was concluded that even in the absence of aeration, the desired NH3 removal efficiency was provided.  相似文献   

5.
In the present work, degradation of 2,4-dinitrophenol (DNP), a persistent organic contaminant with high toxicity and very low biodegradability has been investigated using combination of hydrodynamic cavitation (HC) and chemical/advanced oxidation. The cavitating conditions have been generated using orifice plate as a cavitating device. Initially, the optimization of basic operating parameters have been done by performing experiments over varying inlet pressure (over the range of 3–6 bar), temperature (30 °C, 35 °C and 40 °C) and solution pH (over the range of 3–11). Subsequently, combined treatment strategies have been investigated for process intensification of the degradation process. The effect of HC combined with chemical oxidation processes such as hydrogen peroxide (HC/H2O2), ferrous activated persulfate (HC/Na2S2O8/FeSO4) and HC coupled with advanced oxidation processes such as conventional Fenton (HC/FeSO4/H2O2), advanced Fenton (HC/Fe/H2O2) and Fenton-like process (HC/CuO/H2O2) on the extent of degradation of DNP have also been investigated at optimized conditions of pH 4, temperature of 35 °C and inlet pressure of 4 bar. Kinetic study revealed that degradation of DNP fitted first order kinetics for all the approaches under investigation. Complete degradation with maximum rate of DNP degradation has been observed for the combined HC/Fenton process. The energy consumption analysis for hydrodynamic cavitation based process has been done on the basis of cavitational yield. Degradation intermediates have also been identified and quantified in the current work. The synergistic index calculated for all the combined processes indicates HC/Fenton process is more feasible than the combination of HC with other Fenton like processes.  相似文献   

6.
In the present study the evaluation of Direct Red 89 (DR89) dye removal from synthetic wastewater by a lab-scale hydrodynamic cavitation (HC) process has been investigated under different operational conditions; the influence of co-existing cations and anions was applied using synthetic wastewater to assess whether the DR89 removal was enhanced. To study the effect of operational parameters, an empirical approach was adopted for the modeling of the HC process. The results showed that the DR89 degradation rate was strongly influenced by solution pH, reaction time and initial DR89 concentration. The removal efficiencies of DR89 were enhanced remarkably with the reaction time increment. When the initial concentration of DR89 increased from 30 to 90 mg/L, the DR89 removal efficiency decreased from 36.3 ± 3.8% to 17.5 ± 2.5%. In addition, the highest DR89 removal efficiency (75.4 ± 3.4%) was observed at a solution pH of 3. At a solution pH of 8, the DR89 removal efficiency was 18.4 ± 1.1%. An initial DR89 concentration of 80 mg/L was 75.4 ± 5.1% degraded after 130 min at a solution pH of 3. The results indicated that a synergistic effect occurred due to the added ions except for HCO3. The removal of DR89 by the HC process was extremely enhanced with NO3 ions with synergetic index higher than 2.5. Kinetic studies revealed that the decolorization of DR89 by HC followed a first order kinetic mechanism. The comparison between the predicted results of the empirical model and experimental data was also conducted. The empirical model described the DR89 removal efficiency under different conditions (R2: 0.93) and the results showed the HC reaction to be a useful technology for the treatment of dye in the textile wastewater.  相似文献   

7.
The use of acoustic cavitation for water and wastewater treatment (cleaning) is a well known procedure. Yet, the use of hydrodynamic cavitation as a sole technique or in combination with other techniques such as ultrasound has only recently been suggested and employed.In the first part of this paper a general overview of techniques that employ hydrodynamic cavitation for cleaning of water and wastewater is presented.In the second part of the paper the focus is on our own most recent work using hydrodynamic cavitation for removal of pharmaceuticals (clofibric acid, ibuprofen, ketoprofen, naproxen, diclofenac, carbamazepine), toxic cyanobacteria (Microcystis aeruginosa), green microalgae (Chlorella vulgaris), bacteria (Legionella pneumophila) and viruses (Rotavirus) from water and wastewater.As will be shown, hydrodynamic cavitation, like acoustic, can manifest itself in many different forms each having its own distinctive properties and mechanisms. This was until now neglected, which eventually led to poor performance of the technique. We will show that a different type of hydrodynamic cavitation (different removal mechanism) is required for successful removal of different pollutants.The path to use hydrodynamic cavitation as a routine water cleaning method is still long, but recent results have already shown great potential for optimisation, which could lead to a low energy tool for water and wastewater cleaning.  相似文献   

8.
The degradation of benzene present in wastewater using hydrodynamic cavitation (HC) alone as well as in combination with air has been studied using nozzles as cavitating device of HC reactor. Initially, the energy efficiency of the HC reactor operated at different inlet pressures was determined using the calorimetric studies. Maximum energy efficiency of 53.4% was obtained at an inlet pressure of 3.9 bar. The treatment processes were compared under adiabatic as well as isothermal conditions and it was observed that under the adiabatic condition, the extent of degradation is higher as compared to isothermal condition. Studies related to the understanding the effect of inlet pressure (range of 1.8–3.9 bar) revealed that the maximum degradation as 98.9% was obtained at 2.4 bar pressure using the individual operation of HC under adiabatic conditions and in 70 min of treatment. The combination of HC with air was investigated at different air flow rates with best results for maximum degradation of benzene achieved at air flow rate of 60 mL/sec. A novel approach of using cavitation for a limited fraction of total treatment time was also demonstrated to be beneficial in terms of the extent of degradation as well as energy requirements and cost of operation. Based on the cavitational intensity, the resonant radius of aggregates of cavitation bubbles was also determined for distilled water as well as for aqueous solution of benzene. Overall, significant benefits of using HC combined with air have been demonstrated for degradation of benzene along with fundamental understanding into cavitation effects.  相似文献   

9.
Hydrodynamic cavitation was widely used in sterilization, emulsion preparation and other industrial fields. Cavitation intensity is the key performance index of hydrodynamic cavitation reactor. In this study, a novel rotor-radial groove (RRG) hydrodynamic cavitation reactor was proposed with good cavitation intensity and energy utilization. The cavitation performances of RRG hydrodynamic cavitation reactor was analyzed by utilizing computational fluid dynamics method. The cavitation intensity and the cavitation energy efficiency were used as evaluation indicators for RRG hydrodynamic cavitation reactor with different internal structures. The amount of generated cavitation for various shapes of the CGU, interaction distances and rotor speed were analyzed. The evolution cycle of cavitation morphology is periodicity (0.46 ms) in the CGU of RRG hydrodynamic cavitation reactor. The main cavitation regions of CGU were the outflow and inflow separation zones. The cavitation performance of rectangular-shaped CGU was better than the cylindrical-shaped CGU. In addition, the cavitation performance could be improved more effectively by increasing the rotor speed and decreasing the interaction distance. The research results could provide theoretical support for the research of cavitation mechanism of cavitation equipment.  相似文献   

10.
In this study, a novel hydrodynamic cavitation unit combined with a glow plasma discharge system (HC-GPD) was proposed for the degradation of pharmaceutical compounds in drinking water. Metronidazole (MNZ), a commonly used broad-spectrum antibiotic, was selected to demonstrate the potential of the proposed system. Cavitation bubbles generated by hydrodynamic cavitation (HC) can provide a pathway for charge conduction during glow plasma discharge (GPD). The synergistic effect between HC and GPD promotes the production of hydroxyl radicals, emission of UV light, and shock waves for MNZ degradation. Sonochemical dosimetry provided information on the enhanced formation of hydroxyl radicals during glow plasma discharge compared to hydrodynamic cavitation alone. Experimental results showed a MNZ degradation of 14% in 15 min for the HC alone (solution initially containing 300 × 10−6 mol L−1 MNZ). In experiments with the HC-GPD system, MNZ degradation of 90% in 15 min was detected. No significant differences were observed in MNZ degradation in acidic and alkaline solutions. MNZ degradation was also studied in the presence of inorganic anions. Experimental results showed that the system is suitable for the treatment of solutions with conductivity up to 1500 × 10−6 S cm−1. The results of sonochemical dosimetry showed the formation of oxidant species of 0.15 × 10−3 mol H2O2 L−1 in the HC system after 15 min. For the HC-GPD system, the concentration of oxidant species after 15 min reached 13 × 10−3 mol H2O2 L−1. Based on these results, the potential of combining HC and GPD systems for water treatment was demonstrated. The present work provided useful information on the synergistic effect between hydrodynamic cavitation and glow plasma discharge and their application for the degradation of antibiotics in drinking water.  相似文献   

11.
A parametrical study of disinfection with hydrodynamic cavitation   总被引:1,自引:0,他引:1  
The physical and chemical conditions generated by cavitation bubbles can be used to destroy microorganisms and disinfect wastewater. The effect of different cavitation chamber designs and diverse operational parameters on the inactivation rate of Escherichia coli have been studied and used to understand the mechanisms involved in cell disruption.  相似文献   

12.
The present study reports significant improvements in the removal of ammoniacal nitrogen from wastewater which is an important problem for many industries such as dyes and pigment, distilleries and fisheries. Pilot plant studies (capacity, 1 m3/h) on synthetic wastewater using 4-amino phenol as model nitrogen containing organic compound and two real industrial effluents of high ammoniacal nitrogen content were carried out using hydrodynamic cavitation. Two reactor geometries were evaluated for increased efficiency in removal-orifice and vortex diode. Effect of initial concentration (100–500 mg/L), effect of pressure drop (0.5–5 bar) and nature of cavitating device (linear and vortex flow for cavitation) were evaluated along with effect of salt content, effect of hydrogen peroxide addition and aeration. Initial concentration was found to have significant impact on the extent of removal: ~ 5 g/m3 removal for initial concentration of 100 mg/L and up to 12 g/m3 removal at high concentration of 500 mg/L. Interestingly, significant improvement of the order of magnitude (up to 8 times) in removal of ammoniacal nitrogen could be obtained by sparging air or oxygen in hydrodynamic cavitation and a very high removal of above 80% could be achieved. The removal of ammoniacal nitrogen by vortex diode was also found to be effective in the industrial wastewaters and results on two different effluent samples of distillery industry indicated up to 75% removal, though with longer time of treatment compared to that of synthetic wastewater. The developed methodology of hydrodynamic cavitation technology with aeration and vortex diode as a cavitating device was found to be highly effective for improving the efficiency of the conventional cavitation methods and hence can be highly useful in industrial wastewater treatment, specifically for the removal of ammoniacal nitrogen.  相似文献   

13.
《Ultrasonics sonochemistry》2014,21(4):1392-1399
Industrial wastewater streams containing high concentrations of biorefractory materials like cyanides should ideally be treated at source. In the present work, degradation of potassium ferrocyanide (K4Fe(CN)6) as a model pollutant has been investigated using cavitational reactors with possible intensification studies using different approaches. Effect of different operating parameters such as initial concentration, temperature and pH on the extent of degradation using acoustic cavitation has been investigated. For the case of hydrodynamic cavitation, flow characteristics of cavitating device (venturi) have been established initially followed by the effect of inlet pressure and pH on the extent of degradation. Under the optimized set of operating parameters, the addition of hydrogen peroxide (ratio of K4Fe(CN)6:H2O2 varied from 1:1 to 1:30 mol basis) as process intensifying approach has been investigated. The present work has conclusively established that under the set of optimized operating parameters, cavitation can be effectively used for degradation of potassium ferrocyanide. The comparative study of hydrodynamic cavitation and acoustic cavitation suggested that hydrodynamic cavitation is more energy efficient and gives higher degradation as compared to acoustic cavitation for equivalent power/energy dissipation. The present work is the first one to report comparison of cavitation based treatment schemes for degradation of cyanide containing wastewaters.  相似文献   

14.
Hydrodynamic cavitation is an effective method for chitosan degradation, of which the mechanism directly determines the molecular weight distribution of degradation products. In this study, based on the Monte Carlo simulation and experimental results, the mechanism of chitosan degradation with hydrodynamic cavitation and molecular weight distribution of products were analyzed. The results showed that the algorithm established in the simulation could effectively analyze degradation mechanism and the factors that influenced degradation mechanism and molecular weight distribution of products. The degradation with hydrodynamic cavitation was caused by chemical and mechanical effects, of which the former dominated the degradation process. The outlet and inlet angles and throat length of the cavitator had major and minor influences on the degradation pattern, respectively. The chemical effect led to random cuts resulting in wide distribution of the products, while the mechanical effect led to central cuts resulting in narrow distribution of the products. With more central cuts, the slide-shaped molecular weight distribution curve of degradation products was gradually transferred into a bell-shaped curve. These results provide instructions for researches on the molecular weight distribution of chitosan products degraded with hydrodynamic cavitation.  相似文献   

15.
《Ultrasonics sonochemistry》2014,21(5):1635-1640
In this current study, we present a modified hydrodynamic cavitation device that combines an electric field to substitute for the chemical addition. A modified HC system is basically an orifice plate and crisscross pipe assembly, in which the crisscross pipe imparts some turbulence, which creates collision events. This study shows that for maximizing disintegration, combining HC system, which called electric field-assisted modified orifice plate hydrodynamic cavitation (EFM-HC) in this study, with an electric field is important. Various HC systems were compared in terms of disintegration of WAS, and, among them, the EFM-HC system exhibited the best performance with the highest disintegration efficiency of 47.0 ± 2.0% as well as the destruction of WAS morphological characteristics. The experimental results clearly show that a conventional HC system was successfully modified. In addition, electric field has a great potential for efficient disintegration of WAS for as a additional option in a combination treatment. This study suggests continued research in this field may lead to an appropriate design for commercial use.  相似文献   

16.
Application of hydrodynamic cavitation (HC) was investigated with the objective of biogas production enhancement from co-digestion of oily wastewater (OWW) and waste activated sludge (WAS). Initially, the effect of HC on the OWW was evaluated in terms of energy consumption and turbidity increase. Then, several mixtures of OWW (with and without HC pretreatment) and WAS with the same concentration of total volatile solid were prepared as a substrate for co-digestion. Following, several batch co-digestion trials were conducted. To compare the biogas production, a number of digestion trials were also conducted with a mono substrate (OWW or WAS alone). The best operating condition of HC was achieved in the shortest retention time (7.5 min) with the application of 3 mm diameter orifice and maximum pump rotational speed. Biogas production from all co-digestion reactors was higher than the WAS mono substrate reactors. Moreover, biogas production had a direct relationship with OWW ratio and no major inhibition was observed in any of the reactors. The biogas production was also enhanced by HC pretreatment and almost all of the reactors with HC pretreatment had higher reaction rates than the reactors without pretreatment.  相似文献   

17.
In this study, nanoemulsions for skincare products were continuously produced using a hydrodynamic cavitation reactor (HCR) designed with a rotor and stator. The key component of this research is the utilization of a 3D-printed rotor in a HCR for the production of an oil-in-water nanoemulsion. Response surface methodology was used to determine the process conditions, such as speed of the rotor, flow rate, as well as, Span60, Tween60, and mineral oil concentrations, for generating the optimal droplet size in the nanoemulsion. The results showed that a droplet size of 366.4 nm was achieved under the recommended conditions of rotor speed of 3500 rpm, flow rate of 3.3 L/h, Span60 concentration of 2.36 wt%, Tween60 concentration of 3.00 wt%, and mineral oil concentration of 1.76 wt%. Moreover, the important characteristics for consideration in skincare products, such as polydispersity index, pH, zeta potential, viscosity, stability, and niacin released from formulations, were also assessed. For the niacin release profile of emulsion and nanoemulsion formulations, different methods, such as magnetic stirring, ultrasound, and hydrodynamic cavitation, were compared. The nanoemulsion formulations provided a greater cumulative release from the formulation than the emulsion. Particularly, the nanoemulsion generated using the HCR provided the largest cumulative release from the formulation after 12 h. Therefore, the present study suggests that nanoemulsions can be created by means of hydrodynamic cavitation, which reduces the droplet size, as compared to that generated using other techniques. The satisfactory results of this study indicate that the rotor-stator-type HCR is a potentially cost-effective technology for nanoemulsion production.  相似文献   

18.
19.
Over the last two decades, the scientific community and industry have made huge efforts to develop environmental protection technologies. In particular, the scarcity of drinking water has prompted the investigation of several physico-chemical treatments, and synergistic effects have been observed in hyphenated techniques. Herein, we report the first example of water treatment under simultaneous hydrodynamic cavitation and plasma discharge with the intense generation of radicals, UV light, shock waves and charged particles. This highly reactive environment is well suited to the bulk treatment of polluted water (i.e. E. coli disinfection and organic pollutant degradation). We have developed a new prototype and have efficiently applied this hybrid technology to water disinfection and the complete degradation of methanol in water with the aim of demonstrating its scalability. We have analyzed the mechanisms of water disinfection under the abovementioned conditions and verified them by measuring cavitation noise spectra and plasma emission spectra. We have also used the degradation of textile dyes and methanol solutions as an indicator for the formation of radicals.  相似文献   

20.
The interaction between liquid flow and solid boundary can result in cavitation formation when the local pressure drops below vaporization threshold. The cavitation dynamics does not depend only on basic geometry, but also on surface roughness, chemistry and wettability. From application point of view, controlling cavitation in fluid flows by surface functionalization is of great importance to avoid the unwanted effects of hydrodynamic cavitation (erosion, noise and vibrations). However, it could be also used for intensification of various physical and chemical processes. In this work, the surfaces of 10-mm stainless steel cylinders are laser textured in order to demonstrate how hydrodynamic cavitation behavior can be controlled by surface modification. The surface properties are modified by using a nanosecond (10–28 ns) fiber laser (wavelength of 1060 nm). In such a way, surfaces with different topographies and wettability were produced and tested in a cavitation tunnel at different cavitation numbers (1.0–2.6). Cavitation characteristics behind functionalized cylindrical surfaces were monitored simultaneously by high-speed visualization (20,000 fps) and high frequency pressure transducers. The results clearly show that cavitation characteristics differ significantly between different micro-structured surfaces. On some surfaces incipient cavitation is delayed and cavitation extent decreased in comparison with the reference – a highly polished cylinder. It is also shown that the increased surface wettability (i.e., hydrophilicity) delays the incipient cavitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号