首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The instant controlled pressure drop (DIC) technology enabled both the extraction of essential oil and the expansion of the matrix itself which improved solvent extraction. The sequential use of DIC and Ultrasound Assisted Extraction (UAE) triggered complementary actions materialized by supplementary effects. We visualized these combination impacts by comparing them to standard techniques: Hydrodistillation (HD) and Solvent Extraction (SE). First, the extraction of orange peel Essential Oils (EO) was achieved by HD during 4 h and DIC process (after optimization) during 2 min; EO yields was 1.97 mg/g dry material (dm) with HD compared to 16.57 mg/g dm with DIC. Second, the solid residue was recovered to extract antioxidant compounds (naringin and hesperidin) by SE and UAE. Scanning electron microscope showed that after HD the recovered solid shriveled as opposite to DIC treatment which expanded the product structure. HPLC analyses showed that the best kinetics and yields of naringin and hesperidin extraction was when DIC and UAE are combined. Indeed, after 1 h of extraction, DIC treated orange peels with UAE were 0.825 ± 1.6 × 10?2 g/g of dry material (dm) for hesperidin and 6.45 × 10?2 ± 2.3 × 10?4 g/g dm for naringin compared to 0.64 ± 2.7 × 10?2 g/g of dry material (dm) and 5.7 × 10?2 ± 1.6 × 10?3 g/g dm, respectively with SE. By combining DIC to UAE, it was possible to enhance kinetics and yields of antioxidant extraction.  相似文献   

2.
In this study, extraction of essential oil, polyphenols and pectin from orange peel has been optimized using microwave and ultrasound technology without adding any solvent but only “in situ” water which was recycled and used as solvent. The essential oil extraction performed by Microwave Hydrodiffusion and Gravity (MHG) was optimized and compared to steam distillation extraction (SD). No significant changes in yield were noticed: 4.22 ± 0.03% and 4.16 ± 0.05% for MHG and SD, respectively. After extraction of essential oil, residual water of plant obtained after MHG extraction was used as solvent for polyphenols and pectin extraction from MHG residues. Polyphenols extraction was performed by ultrasound-assisted extraction (UAE) and conventional extraction (CE). Response surface methodology (RSM) using central composite designs (CCD) approach was launched to investigate the influence of process variables on the ultrasound-assisted extraction (UAE). The statistical analysis revealed that the optimized conditions of ultrasound power and temperature were 0.956 W/cm2 and 59.83 °C giving a polyphenol yield of 50.02 mg GA/100 g dm. Compared with the conventional extraction (CE), the UAE gave an increase of 30% in TPC yield. Pectin was extracted by conventional and microwave assisted extraction. This technique gives a maximal yield of 24.2% for microwave power of 500 W in only 3 min whereas conventional extraction gives 18.32% in 120 min. Combination of microwave, ultrasound and the recycled “in situ” water of citrus peels allow us to obtain high added values compounds in shorter time and managed to make a closed loop using only natural resources provided by the plant which makes the whole process intensified in term of time and energy saving, cleanliness and reduced waste water.  相似文献   

3.
Treatment and management of food processing waste is a major challenge for food industry. Potato processing industry generates tremendous amount of peel and consider it as zero valued waste. Again, pomace generated after juice extraction from sweet lime pulp is considered as waste and not properly utilized. Whereas these waste could be utilized for the development of biodegradable packaging film to overcome environmental issues. Composite films were prepared with varying proportion of potato peel powder (PP) and sweet lime pomace (SLP) in the ratio of 0:1(A), 0.5:1(B), 1:1(C), 1:0.5(D), 1:0(E) with an ultrasound treatment of 45 min, and 0:1(F), 0.5:1(G), 1:1(H), 1:0.5(I), 1:0(J) with an ultrasound treatment of 60 min. Ultrasound was applied for 45 and 60 min to film forming solutions to break down biopolymer particles small enough to form a film. All the films were analyzed for their barrier and mechanical properties. It was observed that increasing ultrasound treatment times gives better result in film properties and less PP content also gives better film properties, from these observations film G prepared with 0.5:1 (PP:SLP) showed better characteristics among all other films. Water vapor permeability, moisture absorption, water solubility, breakage strength and elongation capacity of G film were reported as 7.25 × 10−9 g/Pa h m, 12.88 ± 0.348%, 38.92 ± 0.702%, 242.01 ± 3.074 g and 7.61 ± 0.824 mm respectively. However, thermal decomposition for film G took place above 200 °C. The film forming solution of selected G film, added with clove essential oil (1.5%) as an antimicrobial agent was wrapped on bread and stored it for 5 days. The film was successful in lowering the weight loss, reducing the hardness and inhibition of surface microbial load from bread sample.  相似文献   

4.
《Ultrasonics sonochemistry》2014,21(6):2176-2184
Aqueous ultrasound-assisted extraction (UAE) of grape pomace was investigated by Response Surface Methodology (RSM) to evaluate the effect of acoustic frequency (40, 80, 120 kHz), ultrasonic power density (50, 100, 150 W/L) and extraction time (5, 15, 25 min) on total phenolics, total flavonols and antioxidant capacity. All the process variables showed a significant effect on the aqueous UAE of grape pomace (p < 0.05). The Box–Behnken Design (BBD) generated satisfactory mathematical models which accurately explain the behavior of the system; allowing to predict both the extraction yield of phenolic and flavonol compounds, and also the antioxidant capacity of the grape pomace extracts. The optimal UAE conditions for all response factors were a frequency of 40 kHz, a power density of 150 W/L and 25 min of extraction time. Under these conditions, the aqueous UAE would achieve a maximum of 32.31 mg GA/100 g fw for total phenolics and 2.04 mg quercetin/100 g fw for total flavonols. Regarding the antioxidant capacity, the maximum predicted values were 53.47 and 43.66 mg Trolox/100 g fw for CUPRAC and FRAP assays, respectively. When comparing with organic UAE, in the present research, from 12% to 38% of total phenolic bibliographic values were obtained, but using only water as the extraction solvent, and applying lower temperatures and shorter extraction times. To the best of the authors’ knowledge, no studies specifically addressing the optimization of both acoustic frequency and power density during aqueous-UAE of plant materials have been previously published.  相似文献   

5.
In the present research, a combined extraction method of ultrasound-assisted extraction (UAE) in conjunction with solid phase extraction (SPE) was applied to isolation and enrichment of selected drugs (metoprolol, ticlopidine, propranolol, carbamazepine, naproxen, acenocumarol, diclofenac, ibuprofen) from fish tissues. The extracted analytes were separated and determined by ultra-high performance liquid chromatography with UV detection (UHPLC–UV) technique. The selectivity of the developed UHPLC–UV method was confirmed by comparison with ultra-high performance liquid chromatography–tandem mass spectrometry (UHPLC–MS/MS) analysis.The important parameters, such as composition of type and pH of extraction solvent, solid/liquid rate volume of extraction solvent and number of extraction cycles were studied. The ultrasonic parameters, such as time, power and temperature of the process were optimized by using a half-fraction factorial central composite design (CCD). The mixture of 10 mL of methanol and 7 mL of water (pH 2.2) (three times) was chosen for the extraction of selected drug from fish tissues. The results showed that the highest recoveries of analytes were obtained with an extraction temperature of 40 °C, ultrasonic power of 300 W, extraction time of 30 min.Under the optimal conditions, the linearity of method was 0.12–5.00 μg/g. The determination coefficients (R2) were from 0.979 to 0.998. The limits of detection (LODs) and limits of quantification (LOQs) for the extracted compounds were 0.04–0.17 μg/g and 0.12–0.50 μg/g, respectively. The recoveries were between 85.5% and 115.8%.  相似文献   

6.
The present study reports on the extraction of phenolic compounds from sparganii rhizome. Box–Behnken Design (BBD), a widely used form of response surface methodology (RSM), was used to investigate the effect of process variables on the ultrasound-assisted extraction (UAE). Three independent variables including ethanol concentration (%), extraction time (min) and solvent-to-material ratio (mL/g) were studied. The results showed that the optimal UAE condition was obtained with an ethanol concentration of 75.3%, an extraction time of 40 min and a solvent-to-material ratio of 19.21 mL/g for total phenols, and an ethanol concentration of 80%, an extraction time of 33.54 min and solvent-to-material ratio of 22.72 mL/g for combination of ρ-hydroxybenzaldehyde, ρ-coumaric acid, vanillic acid, ferulic acid, rutin and kaempferol. The experimental values under optimal conditions were in good consistent with the predicted values, which suggested UAE is more efficient process as compared to solvent extraction.  相似文献   

7.
Four factors three level face centered central composite response surface design was employed in this study to investigate and optimize the effect of process variables (liquid-solid (LS) ratio (10:1–20:1 ml/g), pH (1−2), sonication time (15–30 min) and extraction temperature (50–70 °C)) on the maximum extraction yield of pectin from waste Artocarpus heterophyllus (Jackfruit) peel by ultrasound assisted extraction method. Numerical optimization method was adapted in this study and the following optimal condition was obtained as follows: Liquid-solid ratio of 15:1 ml/g, pH of 1.6, sonication time of 24 min and temperature of 60 °C. The optimal condition was validated through experiments and the observed value was interrelated with predicted value.  相似文献   

8.
The effectiveness of ultrasonic-assisted extraction (UAE) of pomegranate seed oil (PSO) was evaluated using a variety of solvents. Petroleum ether was the most effective for oil extraction, followed by n-hexane, ethyl acetate, diethyl ether, acetone, and isopropanol. Several variables, such as ultrasonic power, extraction temperature, extraction time, and the ratio of solvent volume and seed weight (S/S ratio) were studied for optimization using response surface methodology (RSM). The highest oil yield, 25.11% (w/w), was obtained using petroleum ether under optimal conditions for ultrasonic power, extraction temperature, extraction time, and S/S ratio at 140 W, 40 °C, 36 min, and 10 ml/g, respectively. The PSO yield extracted by UAE was significantly higher than by using Soxhlet extraction (SE; 20.50%) and supercritical fluid extraction (SFE; 15.72%). The fatty acid compositions were significantly different among the PSO extracted by Soxhlet extraction, SFE, and UAE, with punicic acid (>65%) being the most dominant using UAE.  相似文献   

9.
In this study, the effect of temperature and ultrasonic application on extraction kinetics of polyphenols from dried olive leaf was investigated. Conventional (CVE) and ultrasonic-assisted extraction (UAE) were performed at 10, 20, 30, 50 and 70 °C using water as solvent. Extracts were characterized by measuring the total phenolic content, the antioxidant capacity and the oleuropein content (HPLC–DAD/MS–MS). Moreover, Naik’s model was used to mathematically describe the extraction kinetics. The experimental results showed that phenolic extraction was faster in UAE (ultrasonic-assisted extraction) than in CVE (conventional extraction), being extraction kinetics satisfactorily described using Naik model (include VAR > 98%). Besides, the total phenolic content, the antioxidant capacity and the oleuropein content were significantly (p < 0.05) improved by increasing the temperature in both CVE and UAE. Oleuropein content reached 6.57 ± 0.18 being extracted approximately 88% in the first minute for UAE experiments.  相似文献   

10.
A green, inexpensive and easy-to-use method for carotenoids extraction from fresh carrots assisted by ultrasound was designed in this work. Sunflower oil was applied as a substitute to organic solvents in this green ultrasound-assisted extraction (UAE): a process which is in line with green extraction and bio-refinery concepts. The processing procedure of this original UAE was first compared with conventional solvent extraction (CSE) using hexane as solvent. Moreover, the UAE optimal conditions for the subsequent comparison were optimized using response surface methodology (RSM) and ultra performance liquid chromatography – diode array detector – mass spectroscopy (UPLC–DAD–MS). The results showed that the UAE using sunflower as solvent has obtained its highest β-carotene yield (334.75 mg/l) in 20 min only, while CSE using hexane as solvent obtained a similar yield (321.35 mg/l) in 60 min. The green UAE performed under optimal extraction conditions (carrot to oil ratio of 2:10, ultrasonic intensity of 22.5 W cm?2, temperature of 40 °C and sonication time of 20 min) gave the best yield of β-carotene.  相似文献   

11.
This study examined anthocyanin extraction using the application of ultrasound to raw freeze dried, microwaved and raw sliced Purple Majesty potato, a new pigmented potato variety rich in anthocyanins. A 20 kHz probe was used for the sonication at 3 different amplitudes (30%, 50% and 70%) and ethanol in water at different ratios (50:50 and 70:30 v/v) was used for the extraction. Anthocyanin extraction from raw freeze dried purple potato was optimal at an ethanol:water ratio (70:30; v/v) after 5 min of ultrasonication, while the least amount of anthocyanins was extracted from raw sliced potatoes. The application of microwaves (as a pre-treatment) before the UAE resulted in an increase in the amount of anthocyanins extracted and a decrease in the amount of solvent used. Analysis of variance showed that potato form, ultrasonication time, ultrasonication amplitude and solvent ratio as well as two and three way interactions between some of these factors had a very significant effect (p < 0.000) on the amount of anthocyanins extracted.  相似文献   

12.
The study is aimed to evaluate the efficiency of ultrasound-assisted extraction (UAE) as a simple strategy focused on sample preparation for metal determination in biological samples. The extraction of sodium and potassium extraction was carried out from swine feed followed by determination of the concentration of these metals by flame atomic emission spectrometry (FAES). The experiment was performed to cover the study of the variables influencing the extraction process and its optimal conditions (sample mass, particle size, acid concentration, sonication time and ultrasound power); the determination of these analytical characteristics and method validation using certified reference material; and the analysis of pre-starter diets. The optimal conditions established conditions were as follows: mass: 100 mg, particle size:<60 μm, acid concentration: 0.10 mol L?1 HCl, sonication time: 50 s and ultrasound power: 102 W. The proposed method (UAE) was applied in digestibility assays of those nutrients present in different piglet pre-starter feeds and their results proved to be compatible with those obtained from mineralized samples (P < 0.05). The ultrasound extraction method was demonstrated to be an excellent alternative for handless sampling and operational costs and the method also has the advantage of does not generating toxic residues that may negatively affect human health and contaminate the environment.  相似文献   

13.
In this study, an aqueous ionic liquid based ultrasonic assisted extraction (ILUAE) method for the extraction of the four acetophenones, namely 4-hydroxyacetophenone (1), 2,5-dihydroxyacetophenone (2), baishouwubenzophenone (3) and 2,4-dihydroxyacetophenone (4) from the Chinese medicinal plant Cynanchum bungei was developed. Three kinds of aqueous l-alkyl-3-methylimidazolium ionic liquids with different anion and alkyl chain were investigated. The results indicated that ionic liquids (ILs) showed remarkable effects on the extraction efficiency of acetophenones. In addition, the ILUAE, including several ultrasonic parameters, such as the ILs concentration, solvent to solid ratio, power, particle size, temperature, and extraction time have been optimized. Under these optimal conditions (e.g., with 0.6 M [C4MIM]BF4, solvent to solid ratio of 35:1, power of 175 W, particle size of 60–80 mesh, temperature of 25 °C and time of 50 min), this approach gained the highest extraction yields of four acetophenones 286.15, 21.65, 632.58 and 205.38 μg/g, respectively. The proposed approach has been evaluated by comparison with the conventional heat-reflux extraction (HRE) and regular UAE. The results indicated that ILUAE is an alternative method for extracting acetophenones from C. bungei.  相似文献   

14.
15.
This work reports a comparative study about extraction methods used to obtain anthraquinones (AQs) from stems and leaves of Heterophyllae pustulata Hook (Rubiáceae). One of the conventional procedures used to extract these metabolites from a vegetable matrix is by successive Soxhlet extractions with solvents of increasing polarity: starting with hexane to eliminate chlorophylls and fatty components, following by benzene and finally ethyl acetate. However, this technique shows a low extraction yield of total AQs, and consumes large quantities of solvent and time. Ultrasound-assisted extraction (UAE) and microwave-assisted extraction (MAE) have been investigated as alternative methods to extract these compounds, using the same sequence of solvents. It was found that UAE increases the extraction yield of total AQs and reduces the time and amount of solvent used. Nevertheless, the combination UAE with benzene, plus MAE with ethyl acetate at a constant power of 900 W showed the best results. A higher yield of total AQs was obtained in less time and using the same amount of solvent that UAE. The optimal conditions for this latter procedure were UAE with benzene at 50 °C during 60 min, followed by MAE at 900 W during 15 min using ethyl acetate as extraction solvent.  相似文献   

16.
Curcumin, a dietary phytochemical, has been extracted from rhizomes of Curcuma amada using ultrasound assisted extraction (UAE) and the results compared with the conventional extraction approach to establish the process intensification benefits. The effect of operating parameters such as type of solvent, extraction time, extraction temperature, solid to solvent ratio, particle size and ultrasonic power on the extraction yield have been investigated in details for the approach UAE. The maximum extraction yield as 72% was obtained in 1 h under optimized conditions of 35 °C temperature, solid to solvent ratio of 1:25, particle size of 0.09 mm, ultrasonic power of 250 W and ultrasound frequency of 22 kHz with ethanol as the solvent. The obtained yield was significantly higher as compared to the batch extraction where only about 62% yield was achieved in 8 h of treatment. Peleg’s model was used to describe the kinetics of UAE and the model showed a good agreement with the experimental results. Overall, ultrasound has been established to be a green process for extraction of curcumin with benefits of reduction in time as compared to batch extraction and the operating temperature as compared to Soxhlet extraction.  相似文献   

17.
An efficient cold-mechanical/sonic-assisted extraction technique was developed for extraction of genipin from genipap (Genipa americana) peel. Ultrasound assisted extraction (285 W, 24 kHz) was performed at 5, 10 and 15 °C for 5, 10 and 15 min. After cold-extraction, genipin was separated from pectin and proteins by aid of fungal pectinesterase. The maximum yield of non-cross-linked genipin was 7.85 ± 0.33 mg/g, at 10 °C for 15 min by means of ultrasound extraction. The protein amount in extracts decreased in all samples. If mechanical process is combined with ultrasound assisted extraction the yield is increased by 8 times after the pectinesterase-assisted polyelectrolyte complex formation between pectic polysaccharides and proteins, avoiding the typical cross-linking of genipin. This novel process is viable to obtain non-cross-linked genipin, to be used as a natural colorant and cross-linker in the food and biotechnological industries.  相似文献   

18.
We developed an aqueous ionic liquid based ultrasonic assisted extraction (ILUAE) method for the extraction of the eight ginsenosides (ginsenoside-Rg1, -Re, -Rf, -Rb1, -Rc, -Rb2, -Rb3 and -Rd) from ginseng root. A series of l-alkyl-3-methylimidazolium ionic liquids differing in composition of anions and cations were evaluated for extraction efficiency. The results indicated that the ILUAE method has a remarkable ability to improve the extraction efficiency of ginsenosides. In addition, the ILUAE procedure was also optimized on some ultrasonic parameters, such as the IL concentration, solvent to solid ratio and extraction time. Under these optimal conditions (e.g., with 0.3 M [C3MIM]Br, solvent to solid ratio of 10:1 and extraction time of 20 min), this approach gained the highest extraction yields of total ginsenosides 17.81 ± 0.47 mg/g. Compared with the regular UAE, the proposed approach exhibited 3.16 times higher efficiency and 33% shorter extraction time, which indicated that ILUAE has a broad prospect for sample preparation of medicinal plants.  相似文献   

19.
This paper illustrates the Ultrasound Assisted Extraction (UAE) of β-carotene from Spirulina platensis. Various parameters such as extraction time, solvent type, biomass to solvent ratio, temperature, electrical acoustic intensity, length of the probe tip dipped into the solvent, duty cycle and pre treatment effect were explored for the extraction of β-carotene. From economic point of view, the optimal conditions for the extraction of β-carotene from Spirulina were 1.5 g Spirulina (2 min pre soaked in methanol) in 50 ml n-heptane at 30 °C temperature, 167 W/cm2 electrical acoustic intensity and 61.5% duty cycle for 8 min with probe tip length of 0.5 cm dipped into the extracting solvent from the surface. The maximum extraction achieved under the above mentioned optimum parameters was 47.10%. The pre-treatment time showed a promising effect on the yield as pre-treating the biomass with methanol for 2 min before ultrasonication showed 12 times increase in extraction yield of β-carotene.  相似文献   

20.
Using high-intensity ultrasound, in situ generated α-amylase nanoparticles (NPs) were immobilized on polyethylene (PE) films. The α-amylase NP-coated PE films have been characterized by E-SEM, FTIR, DLS, XPS and RBS. The PE was reacted with HNO3 and NPs of the α-amylase were also deposited on the activated PE. The PE impregnated with α-amylase (4 μg per 1 mg PE) was used for hydrolyzing soluble potato starch to maltose. The immobilization improved the catalytic activity of α-amylase at all the reaction conditions studied. The kinetic parameters, Km (5 and 4 g L?1 for the regular and activated PE, respectively) and Vmax (5 × 10?7 mol ml?1 min?1, almost the same numbers were obtained for the regular and activated PEs) for the immobilized amylase were found to slightly favor the respective values obtained for the free enzyme (Km = 6.6 g L?1, Vmax = 3.7 × 10?7 mol ml?1 min?1). The enzyme remained bound to PE even after soaking the PE in a starch solution for 72 h and was still found to be weakly active.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号