首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to evaluate the efficiency of sonication in releasing protein from a widespread lipase-producing yeast, Yarrowia lipolytica KKP 379, and to examine the impact of ultrasound waves generated in a horn-type sonicator on the lipolytic activity of Y. lipolytica in the hydrolysis of p-nitrophenyl laurate. In this paper, we focused on a few parameters of ultrasound cell disruption, such as the time of sonication, acoustic power, storage time of the frozen yeast biomass used in sonication and the solvent used to suspend the yeast cells which were considered as the most important part in the process of obtaining a biocatalyst from Y. lipolytica for organic synthesis. The most effective additive in protein release proved to be 2% Tween 80; other ideal parameters of the process were ultrasonic power at 150 W for 15 min and 9 weeks of frozen biomass storage time. The sonication parameters, which were the best for protein release, did not seem to be the most effective for obtaining high lipolytic activity due to denaturation as an effect of cavitation.  相似文献   

2.
Acoustic cavitation, induced by ultrasound, can be used to eliminate organic pollutants from water. This type of ultrasonic treatment of polluted water can be grouped with those generally referred to as advanced oxidative processes since it involves hydroxyl radicals. In this case these highly active species are generated from the dissociation of water and oxygen dissociation caused by cavitation bubble collapse. The cavitation induced degradation rates of organic compounds in water are mainly linked to their vapor pressure and solubility and here we will further explore these links by examining the degradation of a mixture of two materials with different physical properties, chlorobenzene and 4-chlorophenol. The results obtained when a dilute solution of a mixture of these compounds saturated with argon is subjected to sonication at 300 kHz, parallels previous observations achieved in an aerated aqueous medium at 500 kHz. The two compounds exhibit sequential degradation with the more volatile chlorobenzene entering the cavitation bubble and being destroyed first. The 4-chlorophenol degradation occurs subsequently only when the chlorobenzene has been completely destroyed. The two compounds exhibit different behavior when sonicated in water saturated with oxygen. Under these conditions the two compounds are degraded simultaneously, a remarkable result for which two explanations can be proposed, both of which are based on the formation of additional OH radical species: The ability to produce conditions for the simultaneous elimination of two organic compounds by the use of oxygen is of great importance in the developing field of ultrasonic water treatment.  相似文献   

3.
Combined sonication with dual-frequency ultrasound has been investigated to enhance heat transfer in forced convection. The test section used for this study consists of a channel with, on one hand, heating blocks normal to the water flow, equipped with thermocouples, and, on the other hand, two ultrasonic emitters. One is facing the heating blocks, thus the ultrasonic field is perpendicular, and the second ultrasonic field is collinear to the water flow. Two types of ultrasonic waves were used: low-frequency ultrasound (25 kHz) to generate mainly acoustic cavitation and high-frequency ultrasound (2 MHz) well-known to induce Eckart’s acoustic streaming. A thermal approach was conducted to investigate heat transfer enhancement in the presence of ultrasound. This approach was completed with PIV measurements to assess the hydrodynamic behavior modifications under ultrasound. Sonochemiluminescence experiments were performed to account for the presence and the location of acoustic cavitation within the water flow. The results have shown a synergetic effect using combined low-and-high-frequency sonication. Enhancement of heat transfer is related to greater induced turbulence within the water flow by comparison with single-frequency sonication. However, the ultrasonically-induced turbulence is not homogeneously distributed within the water flow and the synergy effect on heat transfer enhancement depends mainly on the generation of turbulence along the heating wall. For the optimal configuration of dual-frequency sonication used in this work, a local heat transfer enhancement factor up to 366% was observed and Turbulent Kinetic Energy was enhanced by up to 84% when compared to silent regime.  相似文献   

4.
Acoustic cavitation formed due to propagation of ultrasound wave inside a dye bath was successfully used to dye cotton fabric with a reactive dye at lower temperatures. The energy input to the system during sonication was 0.7 W/cm2. This was within the energy range that contributes towards forming cavitation during ultra-sonication. The influence of ultrasound treatment on dye particle size and fiber morphology is discussed. Particle size analysis of the dye bath revealed ultra-sonication energy was capable of de-agglomeration of hydrolyzed dye molecules during dyeing. SEM micrograph and AFM topographical image of the fiber surface revealed fiber morphology remains unchanged after the sonication. The study was extended in understanding the contribution of ultrasound method of dyeing towards achieving good color strength on the fabric, compared to the normal heating method of dyeing. Study showed color strength obtained using ultra sound method of dyeing is higher compared to normal heating dyeing. Ultrasound energy was able to achieve the good color strength on cotton fabric at very low temperature such as 30 °C, which was approximately 230% more than the color strength achieved in normal heating method of dyeing. This indicates that energy input to the system using ultrasound was capable of acting as an effective alternative method of dyeing knitted cotton fabrics with reactive dye.  相似文献   

5.
A simple theoretical model based on shear forces generated by the collapse of the ultrasound cavities near the surface of a microorganism is proposed. This model requires two parameters which take into account the number of acoustic cavitation bubbles, and the resistance of the cell wall of the microorganism to the shear forces generated by bubble collapse. To validate the model, high-power low frequency (20 kHz) ultrasound was used to inactivate two microorganisms with very different sizes, viz., a bacterium, Enterobacter aerogenes and a yeast, Aureobasidium pullulans. The inactivation ratio was experimentally measured as a function of sonication time for different ultrasound power and for different initial cell numbers. For both E. aerogenes and A. pullulans the Log of the inactivation ratio decreased linearly with sonication time, and the rate of inactivation increased (D-value decreased) with the increase in sonication power. The rate of inactivation was also found, for both microorganisms, to increase with a decrease in the initial cell number. The fits, obtained using the proposed model, are in very good agreement with the experimental data.  相似文献   

6.
In order to quantify the effects of exposure parameters under therapeutic conditions such as sonodynamic therapy, it is necessary initially to evaluate the inertial cavitation activity in vitro. In this study, the dependence of cavitation activity induced by the low-level dual-frequency ultrasound irradiation on exposure parameters has been studied. Experiments were performed in the near 150 kHz and 1 MHz fields in the progressive wave mode. It has been shown that at constant ultrasound energy the fluorescence intensity for continuous sonication is higher than for pulsed mode. With increasing the duty cycle of pulsed field, the inertial cavitation activity is increased. The activity of cavitation produced by simultaneous combined sonication by two ultrasound fields is remarkably higher than the algebraic sum of effects produced by fields separately (p-value < 0.05). This study shows that simultaneous combined dual-frequency ultrasound sonication in continuous mode is more effective in producing inertial cavitation activity at low-level intensity. Therefore, it is concluded that investigations in this combined ultrasound sonication can be useful in sonodynamic therapy for superficial tumors.  相似文献   

7.
When a liquid is irradiated with high intensities of ultrasound irradiation, acoustic cavitation occurs. Acoustic cavitation generates free radicals from the breakdown of water and other molecules. Cavitation can be fatal to cells and is utilized to destroy cancer tumors. The existence of particles in liquid provides nucleation sites for cavitation bubbles and leads to decrease the ultrasonic intensity threshold needed for cavitation onset. In the present investigation, the effect of gold nanoparticles with appropriate amount and size on the acoustic cavitation activity has been shown by determining hydroxyl radicals in terephthalic acid solutions containing 15, 20, 28 and 35 nm gold nanoparticles sizes by using 1 MHz low level ultrasound. The effect of sonication intensity in hydroxyl radical production was considered.The recorded fluorescence signal in terephthalic acid solutions containing gold nanoparticles was considerably higher than the terephthalic acid solutions without gold nanoparticles at different intensities of ultrasound irradiation. Also, the results showed that the recorded fluorescence signal intensity in terephthalic acid solution containing finer size of gold nanoparticles was lower than the terephthalic acid solutions containing larger size of gold nanoparticles. Acoustic cavitation in the presence of gold nanoparticles can be used as a way for improving therapeutic effects on the tumors.  相似文献   

8.
The use of high frequency ultrasound in electrochemical systems is of major interest for the optimisation of electrosynthetic and electroanalytical procedures, especially when the strong mechanical effects of 20 kHz ultrasound are detrimental. The characterisation of a 500 kHz ultrasound reactor for sonoelectrochemical experiments by voltammetric and potentiometric measurements revealed the presence of considerable thermal, as well as mass transport, effects depending on geometric parameters and the material used for the construction of the working electrode. Micromixing and cavitation processes govern the mass transport to and from the electrode surface and are shown by atomic force microscopy (AFM) to cause erosion on the electrode surface. Electrochemically active films of Prussian blue are shown to be gradually removed by cavitation erosion. Degassing the solution prior to sonication increases the efficiency of cavitation processes.  相似文献   

9.
Sonication is known to enhance crystallization of lactose from aqueous solutions. This study has attempted to reveal the mechanistic features of antisolvent crystallization of lactose monohydrate from aqueous solutions. Experiments were conducted in three protocols, viz. mechanical stirring, mechanical stirring with sonication and sonication at elevated static pressure. Mechanical stirring provided macroconvection while sonication induced microconvection in the system. Other experimental parameters were initial lactose concentration and rate of antisolvent (ethanol) addition. Kinetic parameters of crystallization were coupled with simulations of bubble dynamics. The growth rate of crystals, rate of nucleation, average size of crystal crop and total lactose yield in different protocols were related to nature of convection in the medium. Macroconvection assisted nucleation but could not give high growth rate. Microconvection comprised of microstreaming due to ultrasound and acoustic (or shock) waves due to transient cavitation. Sonication at atmospheric static pressure enhanced growth rate but reduced nucleation. However, with elimination of cavitation at elevated static pressure, sonication enhanced both nucleation and growth rate resulting in almost complete lactose recovery.  相似文献   

10.
In the present work the effect of dissolved gases on the extent of ultrasonically induced microbial cell disruption has been explored using a mathematical model and it has been validated by experimental data from literature. Degassing experiments are carried out and a degassing kinetics model for horn type ultrasonic device is presented. An overall model combining hydrodynamic and kinetics of cell disruption for horn type reactor is then proposed. The model includes several important operational parameters such as stress generated by the cavity, cell wall strength, dissolved gas concentration, degassing due to sonication, acoustic streaming generated due to sonication and attenuation of ultrasound in water. Model basically realizes in categorizing the volume of sonochemical reactor as active cavitation zone (ACZ) and inactive cavitation zone (ICZ). All the transformations are seen to occur only in ACZ. The two regions, i.e. ACZ and ICZ are assumed to behave as two mixed flow reactor arranged in closed loop. Suggestions have been also made for efficient design and scale up of ultrasonic devices for microbial cell disruption. The same model can be extended for other applications like particle size reduction, nano particle synthesis, leaching, emulsification with the knowledge of critical rate controlling parameter.  相似文献   

11.
Alternative sweeteners to white sugar with a lower calorie content and glycemic index obtained through date palm fruits is of great interest to the food industry. In this study, ultrasound-assisted extraction of nutritive sugar from date fruit powder was investigated through Box-Behnken design. A maximum total sugar content (TSC) of 812 mg glucose eq./g of DFP was obtained with a sugar extraction yield (SEY) of 81.40 ± 0.27 % under the following optimal extraction conditions: extraction temperature of 60 °C, extraction time of 30 min, and L/S ratio of 7.6 mL/g. Various modern techniques were used to characterize the obtained extracts and associated residues. The results showed that the extract contained fructose, glucose, and sucrose and had good thermal stability. Furthermore, SEM and TSC analysis revealed that ultrasonic treatment of the biomass improved mass transfer diffusion due to acoustic or ultrasonic cavitation, resulting in a higher sugar yield.  相似文献   

12.
This study has investigated ultrasound-assisted xylitol production through fermentation of dilute acid (pentose-rich) hydrolysate of sugarcane bagasse using free cells of Candida tropicalis. Sonication of fermentation mixture at optimum conditions was carried out in ultrasound bath (37 kHz and 10% duty cycle). Time profiles of substrate and product in control (mechanical shaking) and test (mechanical shaking + sonication) fermentations were fitted to kinetic model using Genetic Algorithm (GA) optimization. Max. xylitol yield of 0.56 g/g and 0.61 g/g of xylose was achieved in control and test fermentations, respectively. The biomass yield also increased marginally (∼17%) with sonication. However, kinetics of fermentation increased drastically (2.5×) with sonication with 2× rise in xylose uptake and utilization by the cells. With comparative analysis of kinetic parameters in control and test experiments, this result was attributed to enhanced permeability of cell membrane that allowed faster diffusion of nutrients, substrates and products across cell membrane, higher enzyme-substrate affinity, dilution of toxic components and reduced inhibition of intracellular enzymes by substrate.  相似文献   

13.
Effect of ultrasound on the immunogenic corn cob xylan   总被引:4,自引:0,他引:4  
Changes in the structural, molecular and functional properties of the immunogenic corn cob xylan evoked by ultrasonication in water, 1% NaOH and 5% NaOH were investigated. The reduction of the high molar mass (MM) fraction was more intense than that of the medium MM fraction, depending on the sonic power, sonication time, and alkali concentration. The chain degradation was more effective in the alkaline media. The UV-absorbing component, accompanying the xylan polymers in the whole MM range, showed an accumulation in the high MM region as well as shiftening to higher sizes, particularly in 5% NaOH. The sugar composition and primary structure of the xylan was almost retained under all irradiation conditions studied. Although the biological activity of the xylan was affected by the ultrasound, no significant decrease of the biological response was found at short irradiation time and low sonic power.  相似文献   

14.
The influence of high intensity ultrasound (HIUS) on physicochemical and functional properties of sunflower protein isolates was investigated. Protein solutions (10% w/v) were treated with ultrasound probe (20 kHz) and ultrasound bath (40 kHz) for 5, 10, 20 and 30 min. Thermal stability of protein isolates was reduced as indicated by differential scanning calorimetry. Minimum thermal stability was observed at 20 min of sonication and increased further with increase in treatment time indicating aggregation at prolonged sonication. SDS-PAGE profile of proteins showed a significant reduction in molecular weight. Further, surface hydrophobicity and sulfhydryl content increased after HIUS treatment indicating partial unfolding of proteins and reduction in the intermolecular interactions. The particle size analysis showed that HIUS treatment reduced the particle size. Less turbid solution were observed largely due to reduction in particle size. HIUS decreased the available lysine content in protein isolates. Solubility, emulsifying capacity, emulsion stability, foaming capacity, foam stability and oil binding capacity were improved significantly, while as, water binding capacity was decreased. The effect of HIUS on physicochemical and functional properties of sunflower protein isolates was more pronounced in probe sonication rather than bath sonication. Protein isolates with improved functional properties can be obtained using high intensity ultrasound technology.  相似文献   

15.
Sonochemical oxidation has a promising future in the area of waste water treatment as one of the advanced oxidation methods. In this study, direct ultrasonic degradation of acetic acid was investigated in low powers (0.1-0.4 W) and in a frequency range of 30-100 kHz. An ultrasonic transducer was used for sonication. The results showed that there was an optimum frequency at 60 kHz for direct sonication of acetic acid and degradation rate increased up to a power of 0.2 W and then it decreased. Sonochemistry is associated with the bubble of cavitation which depends on the sound pressure field and nature of molecule. Therefore, the frequency and intensity have to be optimized for the minimization of energy requirement during waste water treatment with ultrasound.  相似文献   

16.
In this work, the use of ultrasound energy for the production of furanic platforms from cellulose was investigated and the synthesis of furfural was demonstrated. Several systems were evaluated, as ultrasound bath, cup horn and probe, in order to investigate microcrystalline cellulose conversion using simply a diluted acid solution and ultrasound. Several acid mixtures were evaluated for hydrolysis, as diluted solutions of HNO3, H2SO4, HCl and H2C2O4. The influence of the following parameters in the ultrasound-assisted acid hydrolysis (UAAH) were studied: sonication temperature (30 to 70 °C) and ultrasound amplitude (30 to 70% for a cup horn system) for 4 to 8 mol L−1 HNO3 solutions. For each evaluated condition, the products were identified by ultra-performance liquid chromatography with high-resolution time-of-flight mass spectrometry (UPLC-ToF-MS), which provide accurate information regarding the products obtained from biomass conversion. The furfural structure was confirmed by nuclear magnetic resonance (1H and 13C NMR) spectroscopy. In addition, cellulosic residues from hydrolysis reaction were characterized using scanning electron microscopy (SEM), which contributed for a better understanding of physical-chemical effects caused by ultrasound. After process optimization, a 4 mol L−1 HNO3 solution, sonicated for 60 min at 30 °C in a cup horn system at 50% of amplitude, lead to 78% of conversion to furfural. This mild temperature condition combined to the use of a diluted acid solution represents an important contribution for the selective production of chemical building blocks using ultrasound energy.  相似文献   

17.
The aim of this work was to demonstrate how ultrasound mechanisms (direct and indirect effects) improve the mass transfer phenomena in food processing, and which part of the process they are more effective in. Two model cases were evaluated: the hydration of sorghum grain (with two water activities) and the influx of a pigment into melon cylinders. Different treatments enabled us to evaluate and discriminate both direct (inertial flow and “sponge effect”) and indirect effects (micro channel formation), alternating pre-treatments and treatments using an ultrasonic bath (20 kHz of frequency and 28 W/L of volumetric power) and a traditional water-bath. It was demonstrated that both the effects of ultrasound technology are more effective in food with higher water activity, the micro channels only forming in moist food. Moreover, micro channel formation could also be observed using agar gel cylinders, verifying the random formation of these due to cavitation. The direct effects were shown to be important in mass transfer enhancement not only in moist food, but also in dry food, this being improved by the micro channels formed and the porosity of the food. In conclusion, the improvement in mass transfer due to direct and indirect effects was firstly discriminated and described. It was proven that both phenomena are important for mass transfer in moist foods, while only the direct effects are important for dry foods. Based on these results, better processing using ultrasound technology can be obtained.  相似文献   

18.
Ultrasound-assisted approach has been investigated for delignification so as to develop green and sustainable technology. Combination of NaOH with ultrasound has been applied with detailed study into effect of various parameters such as time (operating range of 15–90 min), alkali concentration (0.25 M−2.5 M), solvent loading (1:15–1:30 w/v), temperature (50–90 ˚C), power (40–140 W) and duty cycle (40–70 %) at fixed frequency of 20 kHz. The optimized operating conditions established for the ultrasonic horn were 1 M as the NaOH concentration, 1 h as treatment time, 70˚C as the operating temperature, 1:20 as the biomass loading ratio, 100 W as the ultrasonic power and 70% duty cycle yielding 67.30% as the delignification extent. Comparative study performed using conventional and ultrasonic bath assisted alkaline treatment revealed lower delignification as 48.09% and 61.55% respectively. The biomass samples were characterized by SEM, XRD, FTIR and BET techniques to establish the role of ultrasound during the treatment. The morphological changes based on the ultrasound treatment demonstrated by SEM were favorable for enhanced delignification and also the crystallinity index was more in the case of ultrasound treated material than that obtained by conventional method. Specific surface area and pore size determinations based on BET analysis also confirmed beneficial role of ultrasound. The overall results clearly demonstrated the intensification obtained due to the use of ultrasonic reactors.  相似文献   

19.
本文分析了超声空化引起界面湍动对传质过程的影响,提出了相界面上超声空化气泡析出增强边界层液体湍动并促进传质的机理,在传质理论和流体动力学原理的基础上,建立了超声空化引起界面湍动促进的传质机理模型,获得了超声空化引起界面湍动促进的传质系数表达式。实验结果验证了模型的合理性。该模型既证实了超声对传质有强化效应,又对传质过程有很好的预测功能,为工业化提供了理论依据。  相似文献   

20.
Compared to continuous wave (CW) ultrasound, pulsed wave (PW) ultrasound has been shown to result in enhanced sonochemical degradation of octylbenzene sulfonate (OBS). However, pulsed ultrasound was investigated under limited pulsing conditions. In this study, pulse-enhanced degradation of OBS was investigated over a broad range of pulsing conditions and at two ultrasonic frequencies (616 and 205 kHz). The rate of OBS degradation was compared to the rate of formation of 2-hydroxyterephthalic acid (HTA) following sonolysis of aqueous terephthalic acid (TA) solutions. This study shows that sonication mode and ultrasound frequency affect both OBS degradation and HTA formation rates, but not necessarily in the same way. Unlike TA, OBS, being a surface active solute, alters the cavitation bubble field by adsorbing to the gas/solution interface of cavitation bubbles. Enhanced OBS degradation rates during pulsing are attributed to this adsorption process. However, negative or smaller pulse enhancements compared to enhanced HTA formation rates are attributed to a decrease in the high-energy stable bubble population and a corresponding increase in the transient bubble population. Therefore, sonochemical activity as determined from TA sonolysis cannot be used as a measure of the effect of pulsing on the rate of degradation of surfactants in water. Over relatively long sonolysis times, a decrease in the rate of OBS degradation was observed under CW, but not under PW conditions. We propose that the generation and accumulation of surface active and volatile byproducts on the surface and inside of cavitation bubbles, respectively, during CW sonolysis is a contributing factor to this effect. This result suggests that there are practical applications to the use of pulsed ultrasound as a method to degrade surface active contaminants in water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号