首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigated the targeting and ultrasound-triggered injury of cancer cells using anticancer drug-free liposomes that contained an emulsion of perfluoropentane (ePFC5) and were co-modified with avidin as a targeting ligand for cancer cells and the hemagglutinating virus of Japan (HVJ) envelope to promote liposome fusion with the cells. These liposomes are designated as ePFC5-loaded avidin/HVJ liposomes. ePFC5-loaded liposomes were sensitized to ultrasound irradiation. Liposomes modified with avidin alone (avidin liposomes) showed binding to MCF-7 human breast cancer cells, and liposomes modified with HVJ envelope alone (HVJ liposomes) were found to fuse with MCF-7 cells. The irradiation of MCF-7 cells with 1 MHz ultrasound (30 s, 1.2 W/cm2, duty ratio 30%) combined with ePFC5-loaded avidin/HVJ liposomes resulted in a decrease in cell viability at 1 h after irradiation to 43% of that of controls without ultrasound irradiation or liposomes. The cell viability was lower than that of cells treated with ultrasound irradiation with ePFC5-loaded avidin liposomes or ePFC5-loaded HVJ liposomes. This indicates that co-modification of liposome with avidin and HVJ envelope could enhance ultrasound-induced cell injury in the presence of ePFC5-loaded liposomes.  相似文献   

2.
Our study aimed at evaluating the use of ultrasound-assisted microbubbles gene transfer in mice Achilles tendons. Using a plasmid encoding luciferase gene, it was found that an efficient and stable gene expression for more than two weeks was obtained when tendons were injected with 10 μg of plasmid in the presence of 5 × 105 BR14 microbubbles with the following acoustic parameters: 1 MHz, 200 kPa, 40% duty cycle and 10 min of exposure time. The rate of gene expression was 100-fold higher than that obtained with naked plasmid injected alone without ultrasound or with ultrasound in absence of microbubbles. The long term expression of transgene makes ultrasound-assisted microbubble a suitable method for gene therapy in tendons.  相似文献   

3.
Li XH  Zhou P  Wang LH  Tian SM  Qian Y  Chen LR  Zhang P 《Ultrasonics》2012,52(1):186-191
Suicide gene therapy has become an effective therapy for breast cancer, and ultrasound targeted microbubble destruction (UTMD) has become a popular topic in the gene therapy field. In this study, MCF-7 cells with the KDR promoter and LSl74T cells without the KDR promoter were transfected with the recombinant plasmid pEGFP-KDRP-CD/TK using UTMD. The recombinant plasmid pEGFP-KDRP-CD/TK was transfected into MCF-7 and LS174T cells successfully with no significant difference in transfection efficiency (p > 0.05). By RT-PCR, the CD/TK fusion gene was shown to be expressed in MCF-7 cells but not expressed in LS174T cells. In a cytotoxicity experiment, transgenic MCF-7 cells were sensitive to the prodrugs 5-FC and GCV. When both 5-FC and GCV were administered, the rate of cellular inhibition was significantly greater than that achieved when only one of the prodrugs was administered (p < 0.001). Moreover, the inhibition rates achieved administering 5-FC, GCV and both 5-FC and GCV were all significantly greater than the gene transfection rate of 21.92 ± 3.64% (p < 0.001). However, transgenic LS174T cells were not sensitive to any prodrug. These results demonstrated that UTMD is a safe, effective and targeted gene delivery system. Also, the KDR promoter can drive expression of the CD/TK double suicide gene target in MCF-7 cells, and the targeted killing effect of the KDRP-CD/TK gene on MCF-7 cells in vitro has good synergy with expression of the CD/TK fusion gene.  相似文献   

4.
Ultrasound as green process and an alternative energy source was investigated for the environmentally benign synthesis of novel benzoxazoles from different azo-linked salicylic acid derivatives and 2-amino-4-chlorophenol in short reaction time and high yield. These benzoxazole compounds have been characterized by elemental analysis, FT-IR, 1H NMR and 13C NMR spectroscopy.  相似文献   

5.
The polyethylene fibers containing Ag nanoparticles were prepared through the chemical reduction under ultrasound irradiation. The effect of reducing reagent, power of ultrasound irradiation, reaction time and temperature in growth of the nanometric Ag were studied. Particle sizes and morphology of nanoparticle are depending on power of ultrasound irradiation. Results show a decrease in the particles size as increasing power of ultrasound irradiation. Also, an increase in temperature led to increase of particle size. The polyethylene fibers containing Ag nanoparticles were characterized with powder X-ray diffraction (XRD) and scanning electron microscopy (SEM).  相似文献   

6.
The condensation of aldehydes, ethyl acetoacetate and ammonium acetate result 1,4-dihydropyridines in 82–99% yields under ultrasound irradiation without solvent and catalyst at room temperature. Compared with conventional methods, the main advantages of the present procedure are milder conditions, shorter reaction time and higher yields.  相似文献   

7.
Synthesis of the glycolurils catalyzed by potassium hydroxide was carried out in 17–75% yield at 40 °C in EtOH under ultrasound irradiation. Compared to the method using stirring, the main advantage of the present procedure is milder conditions and shorter reaction time.  相似文献   

8.
The present work investigates the contribution of asphaltene aggregation to bitumen viscosity subject to ultrasound irradiation. A West-African bitumen with a viscosity of 12043 cP at room temperature was sonicated at low (38 kHz) and mild frequency (200 kHz) under controlled gas environment including air, nitrogen (N2) and carbon dioxide (CO2). The rheology of the bitumen, asphaltene content analyses as well as spectral studies were conducted. Herein was found that sonicating the bitumen at 200 kHz under air-environment reduces the initial viscosity up to 2079 cP, which was twice larger than that obtained when a low frequency was used. In respect of the gas environment, it was shown that ultrasound irradiation under N2 environment could lower the bitumen viscosity up to 3274 cP. A positive correlation between the asphaltene content and the viscosity reduction was established. The results from the spectral analyses including Fast Fourier Infrared and the observations from Scanned Electron Microscope were consistent with the rheological studies and led to the argument that the viscosity reduction results from either the scission of long chain molecules attached to the aromatic rings (when the applied frequency was altered under fixed gas environment) or the self-aggregation of asphaltene monomers (when gas environment was changed at fixed frequency).  相似文献   

9.
Ultrasound irradiation is used for anchoring zinc oxide submicron crystals with a main diameter and length of 280 nm and 470 nm, respectively, onto the surface of poly(methyl methacrylate) PMMA chips (2 mm diameter), and zinc oxide crystals with a mean diameter and length of 150 nm and 230 nm, respectively, onto the surface of the PMMA spheres (1–10 μm). The zinc oxide crystals were obtained by sonochemical irradiation of a mixture containing the PMMA, zinc (II) acetate dihydrate, ethanol, water, and 24 wt.% aqueous ammonia for 2 h, yielding a PMMA–zinc oxide composite. By controlling the atmosphere and reaction conditions, we could achieve well-adhered zinc oxide crystals on the surface of poly(methyl methacrylate). The resulting zinc oxide–PMMA composite was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), energy-dispersive X-ray analysis (EDX), high-resolution scanning electron microscopy (HRSEM), and photoluminescence (PL) spectroscopy. The zinc oxide-deposited PMMA chips (loaded with 0.03–1.0 wt.% ZnO) were successfully homogenized in melt by extrusion and then injection molded into small, disc-shaped samples. These samples were analyzed with respect to their directional spectral optical properties in UV, Vis and IR spectroscopy.  相似文献   

10.
Ultrasound is a very promising technology to mediated drug/gene transferring into cells. However the relations between cell experimental conditions and results have been still unknown. It seriously impeded the development of the technology. In the article, a transfer efficiency model for ultrasound mediated drug/gene transferring into cells in stable cavitation was constructed. To testify the model, the numerical results were compared with the cell experimental data from six literatures in the entirely different experimental conditions. The numerical results fit the cell experimental data well. Despite simplifications and limitations, the model for the first time established the relationship between the cell experimental results about transfer efficiency and the conditions including ultrasound, microbubble and cells in stable cavitation.  相似文献   

11.
Deprotection of oximes to the corresponding carbonyl compounds in silica sulfuric acid/surfactant/paraformaldehyde system can be carried out in excellent yields at 50 °C in water under ultrasound irradiation.  相似文献   

12.
Synthesis of scorodite (FeAsO4·2H2O) using dynamic action agglomeration and the oxidation effect from ultrasound irradiation was investigated. The effect of different reaction temperatures (90, 70, 50, and 30 °C) on the size and morphology of scorodite particles synthesized under O2 gas flow and ultrasound irradiation was explored because the generation of fine bubbles depends on the solution temperature. At 90 °C, the size of scorodite particles was non-homogeneous (from fine particles (<1 μm) to large particles (>10 μm)). The oxidation–reduction potential (ORP) and yield at 90 °C showed lower values than those at 70 °C. The scorodite particles, including fine and non-homogeneous particles, were generated by a decrease in the oxidation of Fe(II) to Fe(III) and promotion of dissolution caused by the generation of radicals and jet flow from ultrasound irradiation. Using ultrasound irradiation in the synthesis of scorodite at low temperature (30 °C) resulted in the appearance of scorodite peaks in the X-ray diffraction (XRD) pattern after a reaction time of 3 h. The peaks became more intense with a reaction temperature of 50 °C and crystalline scorodite was obtained. Therefore, ultrasound irradiation can enable the synthesis of scorodite at 30 °C as well as the synthesis of large particles (>10 μm) at higher temperature. Oxide radicals and jet flow generated by ultrasound irradiation contributed significantly to the synthesis and crystal growth of scorodite.  相似文献   

13.
14.
In order to have consistent and repeatable effects of sonodynamic therapy (SDT) on various cancer cells or tissue lesions we should be able to control a delivered ultrasound energy and thermal effects induced. The objective of this study was to investigate viability of rat C6 glioma cells in vitro depending on the intensity of ultrasound in the region of cells and to determine the exposure time inducing temperature rise above 43 °C, which is known to be toxic for cells. For measurements a planar piezoelectric transducer with a diameter of 20 mm and a resonance frequency of 1.06 MHz was used. The transducer generated tone bursts with 94 μs duration, 0.4 duty-cycle and initial intensity ISATA (spatial averaged, temporal averaged) varied from 0.33 W/cm2 to 8 W/cm2 (average acoustic power varied from 1 W to 24 W). The rat C6 glioma cells were cultured on a bottom of wells in 12-well plates, incubated for 24 h and then exposed to ultrasound with measured acoustic properties, inducing or causing no thermal effects leading to cell death. Cell viability rate was determined by MTT assay (a standard colorimetric assay for assessing cell viability) as the ratio of the optical densities of the group treated by ultrasound to the control group. Structural cellular changes and apoptosis estimation were observed under a microscope. Quantitative analysis of the obtained results allowed to determine the maximal exposure time that does not lead to the thermal effects above 43 °C in the region of cells for each initial intensity of the tone bursts used as well as the threshold intensity causing cell death after 3 min exposure to ultrasound due to thermal effects. The averaged threshold intensity was found to be about 5.7 W/cm2.  相似文献   

15.
The effects of low-power ultrasound, the anti-cancer drug cisplatin, and their combined application were studied in two lines of human ovarian carcinoma cells, A2780 and A2780cis. Four modes of treatment were used: exposure to ultrasonic field, application of cisplatin, exposure to ultrasound followed by cisplatin, and presence of cisplatin followed by exposure to application ultrasound. Ultrasound was used at intensities of 0.5 W/cm2 and 1.0 W/cm2 for 10 min, cisplatin was applied at concentrations of 1 μM and 6 μM per cell suspension treated in A2780 and cisplatin-resistant A2780cis cells, respectively. The results of each experimental treatment were assessed by the resultant cell viability related to the viability of control cells, using a standard MTT test. It was shown that a combined effect of ultrasound and cisplatin was more effective than that of ultrasound or cisplatin alone. It also appeared that the order of application played a role, with the cisplatin-ultrasound treatment lowering cell viability more than the ultrasound-cisplatin treatment. It can be assumed that the exposure of cells to a low-power ultrasonic field has an immediate effect on the structure of cell surfaces and, consequently, on entry of cisplatin into the cell.The study also included observations on changes in the cell cycle associated with the treatments used in both cell lines and their evaluation by flow cytometry.  相似文献   

16.
A highly efficient and facile one-pot three-component synthesis of N-(4-arylthiazol-2-yl) hydrazones was carried out in excellent yield without any catalyst in water under ultrasound irradiation.  相似文献   

17.
The present paper deal with the multi-component condensation of 8-hydroxy quinoline, aromatic aldehydes, and sulfone derivatives catalyzed by p-toluenesulfonic acid for the synthesis of a series of 4H-pyrano[3,2-h]quinoline derivatives in ethanol under ultrasonic irradiations. We provide a series of quinoline derivatives containing sulfone moiety interesting for biological screening tests. The reactions were carried out under both conventional and ultrasonic irradiation conditions. In general, improvement in rates and yields were observed when reactions were carried out under sonication compared with classical silent conditions. Also, also, sonochemical reaction give different reaction pathway other than silent reaction. These remarkable effects appeared in sonicated reactions can be reasonably interpreted in terms of acoustic cavitation phenomenon. Structures of the products were established on analytical and spectral data.  相似文献   

18.
岳龙  吴宜勇  张延清  胡建民  孙承月  郝明明  兰慕杰 《物理学报》2014,63(18):188101-188101
基于p-n结暗特性双指数模型,对经质子辐射后的单结GaAs/Ge太阳电池的暗特性I-V曲线进行数值拟合,确定了单结GaAs/Ge太阳电池在辐射前后的四个暗特性特征参数,即串联电阻R_s、并联电阻R_(sh)、扩散电流I_(s1)和复合电流I_(s2).研究结果表明,质子辐射后单结GaAs/Ge太阳电池的R_s,R_(sh),I_(s1)和I_(s2)四个暗特性参数均发生显著变化.经低能质子辐射后,单结GaAs/Ge太阳电池的R_(sh)随位移损伤剂量的增加而减小,而R_s,I_(s1)和I_(s2)三个参数随位移损伤剂量的增加而增大,其中串联电阻随位移损伤剂量线性增加而与辐射质子能量无关.理论分析表明,上述参数的变化与质子辐射损伤区域分布有关.基区和发射区的损伤主要引起单结电池串联电阻和扩散电流的增加;结区的损伤导致并联电阻减小,复合电流增大.  相似文献   

19.
In this work, a magnetic bio-metal–organic framework (MBMOF) nanocomposite with porous-layer open morphology is synthesized through a simple sonochemical approach and its effects on Leishmania major (MRHO/IR/75/ER) under both in vitro and in vivo conditions are investigated. The effects of sonication time, initial concentration of reagents and sonication power on size and morphology of MBMOF nanocomposites have been investigated and optimized. A comparison was then made between the structural information of the nanostructures and that of the bio-metal–organic framework crystals. Using the powder X-ray diffraction (PXRD), field emission scanning electron microscope (FE-SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), energy dispersive analysis of X-ray (EDAX), vibrating sample magnetometer (VSM), thermogravimetric analysis (TGA), and Brunauer-Emmet-Teller (BET) techniques, the prepared MBMOF nanocomposites were characterized. The mean numbers of promastigotes (cell/ml) in different MBMOF concentrations (3.12, 6.25, 12.5, 25, 50, 100, 200 and 400 µg mL−1) were determined by direct counting after 24, 48 and 72 h. Using MTT assays, the cytotoxic impacts of the MBMOF nanocomposites on promastigotes, intracellular amastigotes, and J774 macrophages were estimated. In order to investigate their therapeutic effects, the prepared MBMOF nanocomposites (25 and 12.5 µg mL−1) were used as ointment three times a week to treat Leishmania major in BALB/c mice. The lesion size and weight of mice were assessed before and during the treatment. The parasitic loads were measured in spleen and liver through the culture. After 72 h, the INF-γ and IL-4 cytokines levels in the supernatant of the spleen culture were measured. To the best of the authors’ knowledge, this study is the first to attempt to synthesize the bio-MOFs through an in-situ sonosynthesis route under ultrasound irradiation and examine their cytotoxicity effects on Leishmania major under in vitro and in vivo conditions.  相似文献   

20.
Sonodynamic therapy, the ultrasound dependent enhancement of cytotoxic activities of certain compounds (sonosensitizers) in studies with cells in vitro and in tumor bearing animals, is reviewed. The attractive features of this modality for cancer treatment emerges from the ability to focus the ultrasound energy on malignancy sites buried deep in tissues and to locally activate a preloaded sonosensitizer. Possible mechanisms of sonodynamic therapy include generation of sonosensitizer derived radicals which initiate chain peroxidation of membrane lipids via peroxyl and/or alkoxyl radicals, the physical destabilization of the cell membrane by the sonosensitizer thereby rendering the cell more susceptible to shear forces or ultrasound enhanced drug transport across the cell membrane (sonoporation). Evidence against the role of singlet oxygen in sonodynamic therapy is discussed. The mechanism of sonodynamic therapy is probably not governed by a universal mechanism, but may be influenced by multiple factors including the nature of the biological model, the sonosensitizer and the ultrasound parameters. The current review emphasizes the effect of ultrasound induced free radicals in sonodynamic therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号