首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A remarkable enhancement of Raman scattering is achieved by submicrometer‐sized spherical ZnO superstructures. The secondary superstructures of ZnO particles with a uniform diameter in the range of 220–490 nm was formed by aggregating ca. 13 nm primary single crystallites. By engineering the superstructure size to induce Mie resonances, leading to an electromagnetic contribution to the SERS enhancement. Meanwhile, a highly efficient charge‐transfer (CT) contribution derived from the primary structure of the ZnO nanocrystallites was able to enhance the SERS signals as well. The highest Raman enhancement factor of 105 was achieved for a non‐resonant molecule by the synergistic effect of CT and Mie resonances. The Mie resonances scattered near‐field effect investigated in the present study provides not only an important guide for designing novel SERS‐active semiconductor substrates, but also a coherent framework for modelling the electromagnetic mechanism of SERS on semiconductors.  相似文献   

2.
Surface-enhanced Raman spectroscopy (SERS) substrates have been prepared by depositing Au or Ag on porous GaN (PGaN). The PGaN used as the template for the metal deposition in these studies was generated by a Pt-assisted electroless etching technique. PGaN was chosen as a potential SERS template due to its nanostructured surface and high surface area, two characteristics that are important for SERS substrates. Metal films were deposited either by solution-based electroless deposition or by thermal vacuum evaporation. SERS spectra were recorded at lambda = 752.5 nm for Au films and at lambda = 514.5 nm for Ag films deposited on PGaN. The SERS signal strength across the metal coated PGaN substrates was uniform and was not plagued by "hot" or "cold" spots on the surface, a common problem with other SERS surfaces. The Ag film deposited by electroless deposition had the highest overall SERS response, with an enhancement factor (EF) relative to normal Raman spectroscopy of 10(8). A portion of the increase in EF relative to typical SERS-active substrates can be assigned to the large surface area characteristic of the PGaN-Ag structures, but some of the enhancement is intrinsic and is likely related to the specific morphology of the metal-nanopore composite structure.  相似文献   

3.
We report on a facile immunoassay for porcine circovirus type 2 (PCV2) based on surface enhanced Raman scattering (SERS) using multi-branched gold nanoparticles (mb-AuNPs) as substrates. The mb-AuNPs in the immunosensor act as Raman reporters and were prepared via Tris base-induced reduction and subsequent reaction with p-mercaptobenzoic acid (pMBA). They possess good stability and high SERS activity. Subsequently, the modified mb-AuNPs were covalently conjugated to the monoclonal antibody (McAb) against the PCV2 cap protein to form SERS immuno nanoprobes. These were captured in a microtiterplate via a immunoreaction in the presence of target antigens. The effects of antibody concentration, reaction time and temperature on the sensitivity of the immunoassay were investigated. Under optimized assay conditions, the Raman signal intensity at 1,076 cm?1 increases logarithmically with the concentrations of PCV2 in the concentration ranging from 8?×?102 to 8?×?106 copies per mL. The limit of detection is 8?×?102 copies per mL. Compared to conventional detecting methods such as those based on PCR, the method presented here is rapid, facile and very sensitive.
Figure
A simple and novel approach to detect porcine circovirus type 2 using surface enhanced Raman scattering (SERS) of multi-branched gold nanoparticles is demonstrated, it has a higher sensitivity than polymerase chain reaction and ELISA.  相似文献   

4.
M Zhang  A Zhao  D Li  H Sun  D Wang  H Guo  Q Gao  Z Gan  W Tao 《The Analyst》2012,137(19):4584-4592
This paper reports the synthesis of a new class of NaLnF(4)-Ag (Ln = Nd, Sm, Eu, Tb, Ho) hybrid nanorice and its application as a surface-enhanced Raman scattering (SERS) substrate in chemical analyses. Rice-shaped NaLnF(4) nanoparticles as templates are prepared by a modified hydrothermal method. Then, the NaLnF(4) nanorice particles are decorated with Ag nanoparticles by magnetron sputtering method to form NaLnF(4)-Ag hybrid nanostructures. The high-density Ag nanogaps on NaLnF(4) can be obtained by the prolonging sputtering times or increasing the sputtering powers. These nanogaps can serve as Raman 'hot spots', leading to dramatic enhancement of the Raman signal. The NaLnF(4)-Ag hybrid nanorice is found to be robust and is an efficient SERS substrate for the vibrational spectroscopic characterization of molecular adsorbates; the Raman enhancement factor of Rhodamine 6G (R6G) absorbed on NaLnF(4)-Ag nanorice is estimated to be about 10(13). Since the produced NaLnF(4)-Ag hybrid nanorice particles are firmly fastened on a silicon wafer, they can serve as universal SERS substrates to detect target analytes. We also evaluate their SERS performances using 4-mercaptopyridine (Mpy), and 4-mercaptobenzoic acid (MBA) molecules, and the detection limit for Mpy and MBA is as low as 10(-12) M and 10(-10) M, respectively, which meets the requirements of the ultratrace detection of analytes. This simple and highly efficient approach to the large-scale synthesis of NaLnF(4)-Ag nanorice with high SERS activity and sensitivity makes it a perfect choice for practical SERS detection applications.  相似文献   

5.
Nanostructuring of noble metal surfaces with biomorphic and biological templates facilitates a variety of applications of surface enhanced Raman scattering (SERS). Here we show that the newly reported insulin amyloid superstructures may be employed as stable nanoscaffolds for metallic Au films providing an effective substrate for SERS on covalently bound molecules of 4-mercaptobenzoic acid (4-MBA). The vortex-aligned insulin fibrils are capable of templating nanopatterns in sputtered Au layers without overlapping the SERS spectra of 4-MBA with vibrational bands stemming from the protein. This holds true regardless of whether the incident laser beam is directly backscattered from the 4-MBA layer, or after passage through the insulin amyloid layer.  相似文献   

6.
Silver sol surface-enhanced Raman spectroscopy (SERS) was considered as a technique in the quantitative analysis of low-concentration thymine. Because of the poor stability and reproducibility of SERS signal, a polymer of polyacrylic acid sodium was selected as a stable medium to add into silver sol in order to obtain a surface-enhanced Raman spectroscopy signal. Assignments of Raman shift for solid thymine, SERS of thymine, and SERS of thymine containing stable medium were given. The comparison of Raman peaks between them showed that the addition of stable medium had a little influence on the SERS of thymine and is suitable for the quantitative analysis of low-concentration thymine.  相似文献   

7.
We describe a novel surface-enhanced Raman scattering (SERS) tag that is based on Au/Ag core-shell nanostructures embedded with p-aminothiophenol. The Au/Ag core-shell sandwich nanostructures demonstrate bright and dark stripe structure and possess very strong SERS activity. Under optimum conditions, the maximum SERS signal was obtained with a 10?nm thick Ag nanoshell, and the enhancement factor is 3.4?×?104 at 1077?cm?1. After conjugation to the antibody of muramidase releasing protein (MRP), the Au/Ag core-shell nanostructures were successfully applied to an SERS-based detection scheme for MRP based on a sandwich type of immunoassay.
Figure
A novel SERS tag of p-Aminothiophenol (pATP) embedded Au/Ag core-shell nanostructures were prepared by adding precursor solution (AgNO3) into the original Au nanoparticles (NPs) solution. The synthesized SERS tags, as a biosensers, were further applied to detect a biomarker protein of SS2  相似文献   

8.
采用二步电沉积方法在Ti片表面制备了Au-氧化石墨烯(Au-GO)复合薄膜,通过XRD、SEM、XPS等对薄膜的组成、结构和形貌进行了表征,并以罗丹明6G(R6G)为探针分子,对Au-GO/Ti基底的SERS活性进行了表征。结果显示,Au纳米颗粒尺寸约为60 nm,均匀、致密分布于GO表面,该基底显示出较高的SERS活性,对R6G分子的检测极限可达~10-10 mol·L-1,增强因子高达约106,且基底显示出良好的稳定性,在冰箱中存放90 d后,SERS活性仅降低30%左右。  相似文献   

9.
This perspective gives an overview of recent developments in surface-enhanced Raman scattering (SERS) for biosensing. We focus this review on SERS papers published in the last 10 years and to specific applications of detecting biological analytes. Both intrinsic and extrinsic SERS biosensing schemes have been employed to detect and identify small molecules, nucleic acids, lipids, peptides, and proteins, as well as for in vivo and cellular sensing. Current SERS substrate technologies along with a series of advancements in surface chemistry, sample preparation, intrinsic/extrinsic signal transduction schemes, and tip-enhanced Raman spectroscopy are discussed. The progress covered herein shows great promise for widespread adoption of SERS biosensing.  相似文献   

10.
徐玲  姚爱华  胥岩  王德平 《无机化学学报》2016,32(12):2183-2190
采用二步电沉积方法在Ti片表面制备了Au-氧化石墨烯(Au-GO)复合薄膜,通过XRD、SEM、XPS等对薄膜的组成、结构和形貌进行了表征,并以罗丹明6G(R6G)为探针分子,对Au-GO/Ti基底的SERS活性进行了表征。结果显示,Au纳米颗粒尺寸约为60 nm,均匀、致密分布于GO表面,该基底显示出较高的SERS活性,对R6G分子的检测极限可达~10-10 mol·L-1,增强因子高达约106,且基底显示出良好的稳定性,在冰箱中存放90 d后,SERS活性仅降低30%左右。  相似文献   

11.
The potential use of surface Raman enhanced spectroscopy (SERS) for confirmatory identification and the semi-quantitative analysis of selected tricyclic antidepressants (TCAs) is examined utilizing a conventional silver colloid. Raman and SERS spectra of aqueous solutions of imipramine (Imi) and its metabolite, desipramine (Des), were recorded as the function of concentration using NIR excitation. A good linear correlation is observed for the dependence of the SERS signal at 684 cm(-1) (R(2) = 0.9997) on Imi concentration over the range of 0.75-7.5 μM. The limit of detection of imipramine in the silver colloidal solution is 0.98 μM. SERS spectra of Imi and Des were also recorded for blood plasma samples without prior purification as well as after the use of standard solid phase extraction. All spectra show the characteristic spectral profile of the molecules and moreover, stronger signal enhancement is observed for Imi in the "raw" samples as opposed to Imi extracted from a biological matrix.  相似文献   

12.
Active surface-enhanced Raman scattering (SERS) silver nanoparticles substrate was prepared by multiple depositions of Ag nanoparticles on glass slides. The substrate is based on five depositions of Ag nanoparticles on 3-aminopropyl-trimetoxisilane (APTMS) modified glass slides, using APTMS sol–gel as linker molecules between silver layers. The SERS performance of the substrate was investigated using 4-aminobenzenethiol (4-ABT) as Raman probe molecule. The spectral analyses reveal a 4-ABT Raman signal enhancement of band intensities, which allow the detection of this compound in different solutions. The average SERS intensity decreases significantly in 4-ABT diluted solutions (from 10−4 to 10−6 mol L−1), but the compound may still be detected with high signal/noise ratio. The obtained results demonstrate that the Ag nanoparticles sensor has a great potential as SERS substrate.  相似文献   

13.
The mechanism of surface‐enhanced Raman spectroscopy (SERS) is not very clear in view of the magnitude of the contribution of electromagnetic factor as well as the chemical mechanism. This report presents the extent of adsorption at different temperatures in terms of signal enhancements in SERS employing silver nanoparticles (AgNPs) of various shapes as substrate and dye molecules, crystal violet or Rhodamine 6G, as model Raman probes. Initially, the SERS signal increases with increasing temperature until a maximum intensity is reached, before it gradually decreases with increasing temperature. This trend is independent of the shape of the Raman substrates and probes. However, the temperature at which maximum intensity is obtained may depend upon the nature of the Raman probe. The energetics involved in the chemisorption process between dye molecules and AgNPs were determined through isothermal titration calorimetry and their implications for the observed SERS signals were assessed. The maximum heat change occurred at the temperature at which the maximum signal enhancement in SERS was obtained and the enhanced interaction at optimum temperature was confirmed by absorption spectroscopy.  相似文献   

14.
A new method to prepare plasmonically active noble metal nanostructures on large surface area silicon nanowires (SiNWs) mediated by atomic layer deposition (ALD) technology has successfully been demonstrated for applications of surface‐enhanced Raman spectroscopy (SERS)‐based sensing. As host material for the plasmonically active nanostructures we use dense single‐crystalline SiNWs with diameters of less than 100 nm as obtained by a wet chemical etching method based on silver nitrate and hydrofluoric acid solutions. The SERS active metal nanoparticles/islands are made from silver (Ag) shells as deposited by autometallography on the core nanoislands made from platinum (Pt) that can easily be deposited by ALD in the form of nanoislands covering the SiNW surfaces in a controlled way. The density of the plasmonically inactive Pt islands as well as the thickness of noble metal Ag shell are two key factors determining the magnitude of the SERS signal enhancement and sensitivity of detection. The optimized Ag coated Pt islands on SiNWs exhibit great potential for ultrasensitive molecular sensing in terms of high SERS signal enhancement ability, good stability and reproducibility. The plasmonic activity of the core‐shell Pt//Ag system that will be experimentally realized in this paper as an example was demonstrated in numerical finite element simulations as well as experimentally in Raman measurements of SERS activity of a highly diluted model dye molecule. The morphology and structure of the core‐shell Pt//Ag nanoparticles on SiNW surfaces were investigated by scanning‐ and transmission electron microscopy. Optimized core–shell nanoparticle geometries for maximum Raman signal enhancement is discussed essentially based on the finite element modeling.  相似文献   

15.
本文以SiO2为中间层,在多壁碳纳米管(MWCNTs)表面负载Ag纳米粒子,制备出CNTs@SiO2@Ag纳米复合材料,并采用TEM、XRD、UV-Vis、XPS等对纳米复合材料的结构、形貌和成分进行了表征,同时对该纳米复合材料的表面增强拉曼散射(Surface-enhanced Raman scattering,SERS)效应进行了研究。结果显示,Ag纳米颗粒有效提高了CNTs的SERS活性,纳米复合材料的拉曼峰强度是单纯CNTs拉曼峰强的近5倍。进一步研究了吸附罗丹明6G生物染料分子的SERS光谱,结果表明R6G分子的拉曼信号的质量与强度得到显著提高。因此,所制备的CNTs@SiO2@Ag纳米复合材料有望作为SERS的活性基底,应用于生物无损检测领域。  相似文献   

16.
本文以SiO2为中间层,在多壁碳纳米管(MWCNTs)表面负载Ag纳米粒子,制备出CNTs@SiO2@Ag纳米复合材料,并采用TEM、XRD、UV-Vis、XPS等对纳米复合材料的结构、形貌和成分进行了表征,同时对该纳米复合材料的表面增强拉曼散射(Surface-enhancedRamanscattering,SERS)效应进行了研究。结果显示,Ag纳米颗粒有效提高了CNTs的SERS活性,纳米复合材料的拉曼峰强度是单纯CNTs拉曼峰强的近5倍。进一步研究了吸附罗丹明6G生物染料分子的SERS光谱,结果表明R6G分子的拉曼信号的质量与强度得到显著提高。因此,所制备的CNTs@SiO2@Ag纳米复合材料有望作为SERS的活性基底,应用于生物无损检测领域。  相似文献   

17.
The surface enhanced Raman scattering (SERS) of a number of species and strains of bacteria obtained on novel gold nanoparticle (approximately 80 nm) covered SiO(2) substrates excited at 785 nm is reported. Raman cross-section enhancements of >10(4) per bacterium are found for both Gram-positive and Gram-negative bacteria on these SERS active substrates. The SERS spectra of bacteria are spectrally less congested and exhibit greater species differentiation than their corresponding non-SERS (bulk) Raman spectra at this excitation wavelength. Fluorescence observed in the bulk Raman emission of Bacillus species is not apparent in the corresponding SERS spectra. Despite the field enhancement effects arising from the nanostructured metal surface, this fluorescence component appears "quenched" due to an energy transfer process which does not diminish the Raman emission. The surface enhancement effect allows the observation of Raman spectra of single bacterial cells excited at low incident powers and short data acquisition times. SERS spectra of B. anthracis Sterne illustrate this single cell level capability. Comparison with previous SERS studies reveals how the SERS vibrational signatures are strongly dependent on the morphology and nature of the SERS active substrates. The potential of SERS for detection and identification of bacterial pathogens with species and strain specificity on these gold particle covered glassy substrates is demonstrated by these results.  相似文献   

18.
Self‐assembly of anisotropic plasmonic nanomaterials into ordered superstructures has become popular in nanoscience because of their unique anisotropic optical and electronic properties. Gold nanorods (GNRs) are a well‐defined functional building block for fabrication of these superstructures. They possess important anisotropic plasmonic characteristics that result from strong local electric field and are responsive to visible and near‐IR light. There are recent examples of assembling the GNRs into ordered arrays or superstructures through processes such as solvent evaporation and interfacial assembly. In this Minireview, recent progress in the development of the self‐assembled GNR arrays is described, with focus on the formation of oriented GNR arrays on substrates. Key driving forces are discussed, and different strategies and self‐assembly processes of forming oriented GNR arrays are presented. The applications of the oriented GNR arrays in optoelectronic devices are also overviewed, especially surface enhanced Raman scattering (SERS).  相似文献   

19.
A few key examples of polarization effects in surface-enhanced Raman scattering (SERS) are highlighted and discussed. It is argued that the polarization of the local field, which is felt by an analyte molecule in a location of high electromagnetic field enhancement (hot-spot), can be very different from that of the incident exciting beam. The polarization dependence of the SERS signal is, therefore, mostly dictated by the coupling of the laser to the plasmons rather than by the symmetry of the Raman tensor of the analyte. This sets serious restrictions for the interpretation of both single-molecule SERS polarization studies and for the use of circularly polarized light in techniques like surface-enhanced Raman optical activity.  相似文献   

20.
A gold nanoparticle film for surface-enhanced Raman scattering (SERS) was successfully constructed by an ionic surfactant-mediated Langmuir-Blodgett (LB) method. The gold film was formed by adding ethanol to a gold colloid/hexane mixture in the presence of dodecyltrimethylammonium bromide (DTAB). Consequently, gold nanoparticles (AuNPs) assembled at the water/hexane interface due to the decrease in surface charge density of AuNPs. Since DTAB binds the gold surface by a coulombic force, rather than a chemical bonding, it is easily replaced by target molecules for SERS purposes. The SERS enhancement factor of the 80 nm gold nanoparticle film was approximately 1.2 × 10(6) using crystal violet (CV) as a Raman dye. The SERS signal from the proposed DTAB-mediated film was approximately 10 times higher than that from the octanethiol-modified gold film, while the reproducibility and stability of this film compared to an octanethiol-modified film were similar. This method can also be applied to other metal nanostructures to fabricate metal films for use as a sensitive SERS substrate with a higher enhancement factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号