首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hollow microcapsules have been considered for potential applications as drug or gene carriers. This paper describes an investigation into the mechanical properties of microcapsules with a biocompatible polylactic acid (PLA) shell that can be destroyed using ultrasound irradiation. The microcapsules had a radius of 1 to 25 μm and a shell thickness of 100 nm to 3 μm, and their response to ultrasound pulses with a center frequency of 700 kHz to 2 MHz was investigated. It was found that approximately 50% of capsules with a radius of 20 μm were destroyed using pulses with a pressure amplitude of 50 kPa and a frequency of 700 kHz, which is close to the resonance frequency of the capsules.  相似文献   

2.
The performance of an ultrasound reactor chamber relies on the sound pressure level achieved throughout the system. The active volume of a high frequency ultrasound chamber can be determined by the sound pressure penetration and distribution provided by the transducers. This work evaluated the sound pressure levels and uniformity achieved in water by selected commercial scale high frequency plate transducers without and with reflector plates. Sound pressure produced by ultrasonic plate transducers vertically operating at frequencies of 400 kHz (120 W) and 2 MHz (128 W) was characterized with hydrophones in a 2 m long chamber and their effective operating distance across the chamber’s vertical cross section was determined. The 2 MHz transducer produced the highest pressure amplitude near the transducer surface, with a sharp decline of approximately 40% of the sound pressure occurring in the range between 55 and 155 mm from the transducer. The placement of a reflector plate 500 mm from the surface of the transducer was shown to improve the sound pressure uniformity of 2 MHz ultrasound. Ultrasound at 400 kHz was found to penetrate the fluid up to 2 m without significant losses. Furthermore, 400 kHz ultrasound generated a more uniform sound pressure distribution regardless of the presence or absence of a reflector plate. The choice of the transducer distance to the opposite reactor wall therefore depends on the transducer plate frequency selected. Based on pressure measurements in water, large scale 400 kHz reactor designs can consider larger transducer distance to opposite wall and larger active cross-section, and therefore can reach higher volumes than when using 2 MHz transducer plates.  相似文献   

3.
The ultrasonic fractionation of milk fat in whole milk to fractions with distinct particle size distributions was demonstrated using a stage-based ultrasound-enhanced gravity separation protocol. Firstly, a single stage ultrasound gravity separation was characterised after various sonication durations (5–20 min) with a mass balance, where defined volume partitions were removed across the height of the separation vessel to determine the fat content and size distribution of fat droplets. Subsequent trials using ultrasound-enhanced gravity separation were carried out in three consecutive stages. Each stage consisted of 5 min sonication, with single and dual transducer configurations at 1 MHz and 2 MHz, followed by aliquot collection for particle size characterisation of the formed layers located at the bottom and top of the vessel. After each sonication stage, gentle removal of the separated fat layer located at the top was performed.Results indicated that ultrasound promoted the formation of a gradient of vertically increasing fat concentration and particle size across the height of the separation vessel, which became more pronounced with extended sonication time. Ultrasound-enhanced fractionation provided fat enriched fractions located at the top of the vessel of up to 13 ± 1% (w/v) with larger globules present in the particle size distributions. In contrast, semi-skim milk fractions located at the bottom of the vessel as low as 1.2 ± 0.01% (w/v) could be produced, containing proportionally smaller sized fat globules. Particle size differentiation was enhanced at higher ultrasound energy input (up to 347 W/L). In particular, dual transducer after three-stage operation at maximum energy input provided highest mean particle size differentiation with up to 0.9 μm reduction in the semi-skim fractions. Higher frequency ultrasound at 2 MHz was more effective in manipulating smaller sized fat globules retained in the later stages of skimming than 1 MHz. While 2 MHz ultrasound removed 59 ± 2% of the fat contained in the initial sample, only 47 ± 2% was removed with 1 MHz after 3 ultrasound-assisted fractionation stages.  相似文献   

4.
《Ultrasonics》2013,53(1):225-231
The design of high voltage pulser for air coupled ultrasound imaging is presented. It is dedicated for air-coupled ultrasound applications when piezoelectric transducer design is used. Two identical N-channel MOSFETs are used together with 1200 V high and low side driver IC. Simple driving pulses’ delay and skew circuit is used to reduce the cross-conduction. Analysis of switch peak current and channel resistance relation to maximum operation frequency and load capacitance is given. PSPICE simulation was used to analyze the gate driver resistance, gate pulse skew, pulse amplitude influence on energy consumption when loaded by capacitive load. Experimental investigation was verified against simulation and theoretical predictions. For 500 pF capacitance, which is most common for piezoelectric air coupled transducers, pulser consumes 650 μJ at 1 kV pulse and 4 μJ at 50 V. Pulser is capable to produce up to 1 MHz pulse trains with positive 50 V–1 kV pulses with up to 10 A peak output current. When loaded by 200 kHz transducer at 1 kV pulse amplitude rise time is 40 ns and fall time is 32 ns which fully satisfies desired 1 MHz bandwidth.  相似文献   

5.
We demonstrate graphene mode-locked nanosecond erbium-doped fiber laser in an all-fiber ring cavity. The clean and robust pulse train was generated at 27 mW pump power. Resultant central wavelength, repetition rate and pulse width was 1560 nm, 388 kHz and 6 ns, respectively. With two stage fiber amplifier, the output power was 553 mW, corresponding to single pulse energy of 1.4 μJ. In addition, the pulse-width can be varied ranging from 3 ns to 20 ns at repetition rate between 200 kHz and 1.54 MHz by changing the length of the laser cavity.  相似文献   

6.
Sonocatalytic degradation experiments were carried out to determine the effects of glass beads (GBs) and single-walled carbon nanotubes (SWNTs) on ibuprofen (IBP) and sulfamethoxazole (SMX) removal using low and high ultrasonic frequencies (28 and 1000 kHz). In the absence of catalysts, the sonochemical degradation at pH 7, optimum power of 0.18 W mL−1, and a temperature of 15 °C was higher (79% and 72%) at 1000 kHz than at 28 kHz (45% and 33%) for IBP and SMX, respectively. At the low frequency (28 kHz) H2O2 production increased significantly, from 10 μM (no GBs) to 86 μM in the presence of GBs (0.1 mm, 10 g L−1); however, no enhancement was achieved at 1000 kHz. In contrast, the H2O2 production increased from 10 μM (no SWNTs) to 31 μM at 28 kHz and from 82 μM (no SWNTs) to 111 μM at 1000 kHz in the presence of SWNTs (45 mg L−1). Thus, maximum removals of IBP and SMX were obtained in the presence of a combination of GBs and SWNTs at the low frequency (94% and 88%) for 60 min contact time; however, >99% and 97% removals were achieved for 40 and 60 min contact times at the high frequency for IBP and SMX, respectively. The results indicate that both IBP and SMX degradation followed pseudo-first-order kinetics. Additionally, the enhanced removal of IBP and SMX in the presence of catalysts was because GBs and SWNTs increased the number of free OH radicals due to ultrasonic irradiation and the adsorption capacity increase with SWNT dispersion.  相似文献   

7.
We have previously reported on the morphological control of calcium carbonate by changing synthetic conditions such as temperature, pH and degree of supersaturation in liquid reaction. The present study reports the effect of amplitude and frequency of ultrasonic irradiation on the particle size of calcium carbonate using a horn type ultrasonic apparatus at two different frequencies. The calcium carbonate precipitated by mechanical stirring had a particle size of about 20 μm. By contrast, the particle size of vaterite formed under ultrasonic irradiation was about 2 μm, with a specific surface area of 25–30 m2/g. The major polymorph of calcium carbonate formed by ultrasonic irradiation was vaterite with some calcite present. For 40 kHz ultrasonic irradiation, the specific surface area of the calcium carbonate increased with increasing amplitude. The particle size of vaterite formed at this frequency was about 2 μm, and its distribution was sharper than that obtained at 20 kHz. The mode diameter of the synthesized vaterite was found to decrease with increasing amplitude at 40 kHz.  相似文献   

8.
A technique has been developed which facilitates the preparation of electro-polished micro-foil transmission electron microscopy (TEM) specimens, which have previously been machined out of ≈100 μm diameter metallic powder particles using a Focussed Ion Beam (FIB) instrument. The technique can be used to create small volume TEM specimens from most metallic powder particles and bulk metal samples. This is especially useful when the matrices are ferritic steels, which are often difficult to image in the electron microscope, since the necessary aberration corrections change as the sample is tilted in the magnetic field of the objective lens.Small samples, such as powder particles, were attached to gold support grids using deposited platinum and were then ion milled to approximately 2 μm thickness in a focussed ion beam (FIB) instrument. Subsequently, the specimen assemblies were electropolished for short durations under standard conditions, to produce large (5 μm × 5 μm) electron transparent regions of material. The specimens produced by this technique were free from FIB related artefacts and facilitated atomic resolution scanning-TEM (STEM) imaging of ferritic and nickel matrices containing, for example, yttrium rich oxide nano-dispersoids.  相似文献   

9.
The selective hydrogenation of 2-methyl-3-butyn-2-ol (MBY) was performed in the presence of Lindlar catalyst, comparing conventional stirring with sonication at different frequencies of 40, 380 and 850 kHz. Under conventional stirring, the reaction rates were limited by intrinsic kinetics, while in the case of sonication, the reaction rates were 50–90% slower. However, the apparent reaction rates were found to be significantly frequency dependent with the highest rate observed at 40 kHz. The original and the recovered catalysts after the hydrogenation reaction were compared using bulk elemental analysis, powder X-ray diffraction and scanning and transmission electron microscopy coupled with energy-dispersive X-ray analysis. The studies showed that sonication led to the frequency-dependent fracturing of polycrystalline support particles with the highest impact caused by 40 kHz sonication, while monocrystals were undamaged. In contrast, the leaching of Pd/Pb particles did not depend on the frequency, which suggests that sonication removed only loosely-bound catalyst particles.  相似文献   

10.
《Ultrasonics sonochemistry》2014,21(6):2092-2098
This study showed that temperature influences the rate of separation of fat from natural whole milk during application of ultrasonic standing waves. In this study, natural whole milk was sonicated at 600 kHz (583 W/L) or 1 MHz (311 W/L) with a starting bulk temperature of 5, 25, or 40 °C. Comparisons on separation efficiency were performed with and without sonication. Sonication using 1 MHz for 5 min at 25 °C was shown to be more effective for fat separation than the other conditions tested with and without ultrasound, resulting in a relative change from 3.5 ± 0.06% (w/v) fat initially, of −52.3 ± 2.3% (reduction to 1.6 ± 0.07% (w/v) fat) in the skimmed milk layer and 184.8 ± 33.2% (increase to 9.9 ± 1.0% (w/v) fat) in the top layer, at an average skimming rate of ∼5 g fat/min. A shift in the volume weighted mean diameter (D[4,3]) of the milk samples obtained from the top and bottom of between 8% and 10% relative to an initial sample D[4,3] value of 4.5 ± 0.06 μm was also achieved under these conditions. In general, faster fat separation was seen in natural milk when natural creaming occurred at room temperature and this separation trend was enhanced after the application of high frequency ultrasound.  相似文献   

11.
We report the first demonstration, to our knowledge, of passive Q-switched mode-locking in a Tm3+:YAP laser, operating in the 2 μm broadly spectral region formed with a compact Z-flod cavity. A transmission-type single-walled carbon nanotube saturable absorber (SWCNT–SA) is used for the initiation of the pulse generation. The repetition rate of the Q-switched envelope was 60 kHz at the pump power of 8.6 W. The mode-locked pulses inside the Q-switched pulse envelope had a repetition rate of ~92 MHz. A maximum average output power of 761 mW was obtained. The dependence of the operational parameters on the pump power was also investigated experimentally.  相似文献   

12.
The physical or mechanical effects induced by ultrasound were investigated through the viscosity change in degradation of polymers. The viscosity change was observed with polyethylene oxide in both aqueous and benzene solution; while polystyrene in only benzene solution. The frequency of ultrasound in these experiments varies from 20 kHz to 1 MHz, under a constant dissipated power. The viscosity ratio and the apparent degradation rate were obtained as a function of the irradiation frequency. From the analysis of these experiments, the mechanical effects are found to slow down above 100 kHz when the frequency increases. In case of the analysis of solution viscosity, since this method yields the same apparent results in both aqueous and benzene solutions, our study propose an alternative simple, cost effective method to quantify the mechanical effects in sonochemistry.  相似文献   

13.
《Ultrasonics》2013,53(1):249-254
It has recently been demonstrated that it was possible to individually trap 70 μm droplets flowing within a 500 μm wide microfluidic channel by a 24 MHz single element piezo-composite focused transducer. In order to further develop this non-invasive approach as a microfluidic particle manipulation tool of high precision, the trapping force needs to be calibrated to a known force, i.e., viscous drag force arising from the fluid flow in the channel. However, few calibration studies based on fluid viscosity have been carried out with focused acoustic beams for moving objects in microfluidic environments.In this paper, the acoustic trapping force (Ftrapping) and the trap stiffness (or compliance k) are experimentally determined for a streaming droplet in a microfluidic channel. Ftrapping is calibrated to viscous drag force produced from syringe pumps. Chebyshev-windowed chirp coded excitation sequences sweeping the frequency range from 18 MHz to 30 MHz is utilized to drive the transducer, enabling the beam transmission through the channel/fluid interface for interrogating the droplets inside the channel. The minimum force (Fmin,trapping) required for initially immobilizing drifting droplets is determined as a function of pulse repetition frequency (PRF), duty factor (DTF), and input voltage amplitude (Vin) to the transducer. At PRF = 0.1 kHz and DTF = 30%, Fmin,trapping is increased from 2.2 nN for Vin = 22 Vpp to 3.8 nN for Vin = 54 Vpp. With a fixed Vin = 54 Vpp and DTF = 30%, Fmin,trapping can be varied from 3.8 nN at PRF = 0.1 kHz to 6.7 nN at PRF = 0.5 kHz. These findings indicate that both higher driving voltage and more frequent beam transmission yield stronger traps for holding droplets in motion.The stiffness k can be estimated through linear regression by measuring the trapping force (Ftrapping) corresponding to the displacement (x) of a droplet from the trap center. By plotting Ftrappingx curves for certain values of Vin (22/38/54 Vpp) at DTF = 10% and PRF = 0.1 kHz, k is measured to be 0.09, 0.14, and 0.20 nN/μm, respectively. With variable PRF from 0.1 to 0.5 kHz at Vin = 54 Vpp, k is increased from 0.20 to 0.42 nN/μm. It is shown that a higher PRF leads to a more compliant trap formation (or a stronger Ftrapping) for a given displacement x. Hence the results suggest that this acoustic trapping method has the potential as a noninvasive manipulation tool for individual moving targets in microfluidics by adjusting the transducer’s excitation parameters.  相似文献   

14.
Output performance of a continuous-wave (CW) laser diode end-pumped passively Q-switched Tm,Ho:YLF laser is demonstrated with a Cr:ZnS crystal as the saturable absorber. We particularly investigate the influence of saturable absorber's position in the resonator when the Cr:ZnS crystal is placed close to and far from the laser beam waist. We compare the experimental results at the two different positions, and find that the laser shows unusual output characteristics when the Cr:ZnS saturable absorber is placed close to the beam waist. The pulse width and the pulse energy almost keep constant, measured about 1.25 μs and 4 μJ respectively, when the pump power is changed in the range of 1–1.9 W. Moreover, the pulse repetition frequency can be tuned between 1.3 kHz and 2.6 kHz by changing the pump power. The output wavelength of the passively Q-switched laser shifts to 2053 nm from 2067 nm in CW operation.  相似文献   

15.
Acoustic cavitation energy distributions were investigated for various frequencies such as 35, 72, 110 and 170 kHz in a large-scale sonoreactor. The energy analyses were conducted in three-dimensions and the highest and most stable cavitation energy distribution was obtained not in 35 kHz but in 72 kHz. However, the half-cavitation-energy distance was larger in the case of 35 kHz ultrasound than in the case of 72 kHz, demonstrating that cavitation energy for one cycle was higher for a lower frequency. This discrepancy was due to the large surface area of the cavitation-energy-meter probe. In addition, 110 and 170 kHz ultrasound showed a very low and poor cavitation energy distribution. Therefore larger input power was required to optimize the use of higher frequency ultrasound in the sonoreactor with long-irradiation distance. The relationship between cavitation energy and sonochemical efficiency using potassium iodide (KI) dosimetry was best fitted quadratically. From 7.77 × 10?10 to 4.42 × 10?9 mol/J of sonochemical efficiency was evaluated for the cavitation energy from 31.76 to 103. 67 W. In addition, the cavitation energy attenuation was estimated under the assumption that cavitation energy measured in this study would be equivalent to sound intensity, resulting in 0.10, 0.18 and 2.44 m?1 of the attenuation coefficient (α) for 35, 72 and 110 kHz, respectively. Furthermore, α/(frequency)2 was not constant, as some previous studies have suggested.  相似文献   

16.
《Ultrasonics sonochemistry》2014,21(6):2138-2143
The delivery of a consistent quality product to the consumer is vitally important for the food industry. The aim of this study was to investigate the potential for using high frequency ultrasound applied to pre- and post-rigor beef muscle on the metabolism and subsequent quality. High frequency ultrasound (600 kHz at 48 kPa and 65 kPa acoustic pressure) applied to post-rigor beef striploin steaks resulted in no significant effect on the texture (peak force value) of cooked steaks as measured by a Tenderometer. There was no added benefit of ultrasound treatment above that of the normal ageing process after ageing of the steaks for 7 days at 4 °C. Ultrasound treatment of post-rigor beef steaks resulted in a darkening of fresh steaks but after ageing for 7 days at 4 °C, the ultrasound-treated steaks were similar in colour to that of the aged, untreated steaks. High frequency ultrasound (2 MHz at 48 kPa acoustic pressure) applied to pre-rigor beef neck muscle had no effect on the pH, but the calculated exhaustion factor suggested that there was some effect on metabolism and actin-myosin interaction. However, the resultant texture of cooked, ultrasound-treated muscle was lower in tenderness compared to the control sample. After ageing for 3 weeks at 0 °C, the ultrasound-treated samples had the same peak force value as the control. High frequency ultrasound had no significant effect on the colour parameters of pre-rigor beef neck muscle. This proof-of-concept study showed no effect of ultrasound on quality but did indicate that the application of high frequency ultrasound to pre-rigor beef muscle shows potential for modifying ATP turnover and further investigation is warranted.  相似文献   

17.
Ultrasonic frequencies of 20 kHz, 382 kHz, 584 kHz, 862 kHz (and 998 kHz) have been compared with regard to energy output and hydroxyl radical formation utilising the salicylic acid dosimeter. The 862 kHz frequency inputs 6 times the number of Watts into water, as measured by calorimetry, with the other frequencies having roughly the same value under very similar conditions. A plausible explanation involving acoustic fountain formation is proposed although enhanced coupling between this frequency and water cannot be discounted. Using the salicylic acid dosimeter and inputting virtually the same Wattages it is established that 862 kHz is around 10% more efficient at generating hydroxyl radicals than the 382 kHz but both of these are far more effective than the other frequencies. Also, it is found that as temperature increases to 42 °C then the total dihydroxybenzoic acid (Total DHBA) produced is virtually identical for 382 kHz and 862 kHz, though 582 kHz is substantially lower, when the power levels are set at approximately 9 W for all systems. An equivalent power level of 9 W could not be obtained for the 998 kHz transducer so a direct comparison could not be made in this instance. These results have implications for the optimum frequencies chosen for both Advanced Oxidation Processes (AOPs) and organic synthesis augmented by ultrasound.  相似文献   

18.
Yuh Ming Hsu  Chung Cheng Chang 《Optik》2012,123(18):1627-1631
In this study, the oscillation conditions for series photodetector frequency circuit system were proposed and verified experimentally. The effect of the capacitance Cp and oscillator phase θ on the oscillation ability of series photodetector frequency circuit system was investigated. It revealed that series photodetector frequency circuit system possessed excellent oscillation ability, but the oscillation ability decreased with increasing oscillator phase or decreasing capacitance Cp, even resulted in a cease-to oscillate zone. Moreover, this study elucidated the frequency response and optical detection of series photodetector frequency circuit system matched with PMMA for fluorescence dye concentration. In accordance with Hex fluorescence dye concentrations and frequency responses, the detection limit of fluorescence dye concentration 3.3 pmol/L can be measured by 100 MHz sensor system matched with PMMA. The results also showed that the frequency shift of 100 MHz sensor system matched with PMMA was linearly related to the logarithm of fluorescence dye concentration from 3.3 pmol/L to 33.3 μmol/L.  相似文献   

19.
This work validated, in a higher frequency range, the theoretical predictions made by Boyle around 1930, which state that the optimal transmission of sound pressure through a metal plate occurs when the plate thickness equals a multiple of half the wavelength of the sound wave. Several reactor design parameters influencing the transmission of high frequency ultrasonic waves through a stainless steel plate were examined. The transmission properties of steel plates of various thicknesses (1–7 mm) were studied for frequencies ranging from 400 kHz to 2 MHz and at different distances between plates and transducers. It was shown that transmission of sound pressure through a steel plate showed high dependence of the thickness of the plate to the frequency of the sound wave (thickness ratio). Maximum sound pressure transmission of ∼60% of the incident pressure was observed when the ratio of the plate thickness to the applied frequency was a multiple of a half wavelength (2 MHz, 6 mm stainless steel plate). In contrast, minimal sound pressure transmission (∼10–20%) was measured for thickness ratios that were not a multiple of a half wavelength. Furthermore, the attenuation of the sound pressure in the transmission region was also investigated. As expected, it was confirmed that higher frequencies have more pronounced sound pressure attenuation than lower frequencies. The spatial distribution of the sound pressure transmitted through the plate characterized by sonochemiluminescence measurements using luminol emission, supports the validity of the pressure measurements in this study.  相似文献   

20.
The ultrasonic horn and bath reactors were compared based on production of angiotensin-converting-enzyme (ACE) inhibitory peptides from defatted wheat germ proteins (DWGP). The DWGP was sonicated before hydrolysis by Alcalase. Degree of hydrolysis, ACE-inhibitory activity, surface hydrophobicity, fluorescence intensity, free sulfhydryl (SH), and disulfide bond (SS) were determined. The highest ACE-inhibitory activity of DWGP hydrolysate was obtained at power intensity of 191.1 W/cm2 for 10 min in the ultrasonic horn reactor. The fixed frequency of 33 kHz and the sweep frequency of 40 ± 2 kHz resulted in the maximum ACE-inhibitory activity. The combined irradiation of dual fixed frequency (24/68 kHz) produced significant increase in ACE-inhibitory activity compared with single frequency (33 kHz). The ultrasonic probe resulted in significant higher ACE-inhibitory activity compared with ultrasonic bath operating at single or dual fixed and sweep frequencies. The changes in conformation of the DWGP due to sonication were confirmed by the changes in fluorescence intensity, surface hydrophobicity, SHf and SS contents and they were found in conformity with the ACE-inhibitory activity in case of the ultrasonic horn reactor but not in bath reactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号