首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electronic and optical properties of pure and V-doped AlN nanosheet have been investigated using density functional theory, and the dielectric tensor is calculated using the random phase approximation (RPA). The results of structural calculations show that the V atoms tend to replace instead of aluminum atoms with the lowest formation energy. In addition, study of the electronic properties shows that pure AlN nanosheet is a p-type semiconductor that by increasing one V atom, it possesses the metallic properties and magnetic moment becomes Zero. Moreover, by replacing two V atoms, the half-metallic behavior with 100% spin polarization can be found, and each supercell gains a net magnetic moment of 3.99 µB. Optical properties like the dielectric function, the energy loss function, the absorption coefficients, the refractive index are calculated for both parallel and perpendicular electric field polarizations, and the results show that the optical spectra are anisotropic.  相似文献   

2.
The interlayer bonding in two-dimensional (2D) materials is particularly important because it is not only related to their physical and chemical stability but also affects their mechanical, thermal, electronic, optical, and other properties. To address this issue, we report the direct characterization of the interlayer bonding in 2D SnSe using contact-resonance atomic force microscopy (CR-AFM) in this study. Site-specific CR spectroscopy and CR force spectroscopy measurements are performed on both SnSe and its supporting SiO2/Si substrate comparatively. Based on the cantilever and contact mechanic models, the contact stiffness and vertical Young’s modulus are evaluated in comparison with SiO2/Si as a reference material. The interlayer bonding of SnSe is further analyzed in combination with the semi-analytical model and density functional theory calculations. The direct characterization of interlayer interactions using this non-destructive methodology of CR-AFM would facilitate a better understanding of the physical and chemical properties of 2D layered materials, specifically for interlayer intercalation and vertical heterostructures.  相似文献   

3.
Searching for new carbon allotropes with superior properties has been a longstanding interest in material sciences and condensed matter physics.Here we identify a novel superhard carbon phase with an 18-atom trigonal unit cell in a full-sp~3 bonding network,termed tri-C_(18) carbon,by first-principles calculations.Its structural stability has been verified by total energy,phonon spectra,elastic constants,and molecular dynamics simulations.Furthermore,tri-C_(18) carbon has a high bulk modulus of 400 GPa and Vickers hardness of 79.0 GPa,comparable to those of diamond.Meanwhile,the simulated x-ray diffraction pattern of tri-C_(18) carbon matches well with the previously unexplained diffraction peaks found in chimney soot,indicating the possible presence of tri-C_(18)carbon.Remarkably,electronic band structure calculations reveal that tri-C_(18) carbon has a wide indirect bandgap of 6.32 eV,larger than that of cubic diamond,indicating its great potential in electronic or optoelectronic devices working in the deep ultraviolet region.  相似文献   

4.
宁兆元  程珊华  叶超 《物理学报》2001,50(3):566-571
使用CHF3和C6H6混合气体做气源,在一个电子回旋共振等离子体增强化学气相沉积装置中制备了氟化非晶碳(a-CFx)薄膜.利用发射光谱研究了等离子体中形成的各种碳氟、碳氢基团随放电宏观参量的变化规律,对薄膜做了傅里叶变换红外光谱和X射线光电子能谱分析,证实等离子体中的CF2,CF和CH基团是控制薄膜生长、碳/氟成分比和化学键结构的主要前驱物 关键词: 氟化非晶碳薄膜 电子回旋共振等离子体  相似文献   

5.
By using first-principles pseudopotential method, we investigate the structural, vibrational, and electronic properties of monolayer and bilayer honeycomb structures of group-IV elements and their binary compounds. It is found that the honeycomb structures of Si, Ge, and SiGe are buckled for stabilization, while those of binary compounds SiC and GeC containing the first row elements C are planar similar to a graphene sheet. The phonon dispersion relations and electronic band structures are very sensitive to the number of layers, the stacking order, and whether the layers are planar or buckled.  相似文献   

6.
Pb-based group-IV chalcogenides including Pb Te and Pb Se have been extensively studied as high performance thermoelectric materials during the past few decades.However,the toxicity of Pb inhibits their applications in vast fields due to the serious harm to the environment.Recently the Pb-free group-IV chalcogenides have become an extensive research subject as promising thermoelectric materials because of their unique thermal and electronic transport properties as well as the enviromentally friendly advantage.This paper briefly summarizes the recent research advances in Sn-,Ge-,and Sichalcogenides thermoelectrics,showing the unexceptionally high thermoelectric performance in Sn Se single crystal,and the significant improvement in thermoelectric performance for those polycrystalline materials by successfully modulating the electronic and thermal transport through using some well-developed strategies including band engineering,nanostructuring and defect engineering.In addition,some important issues for future device applications,including N-type doping and mechanical and chemical stabilities of the new thermoelectrics,are also discussed.  相似文献   

7.
The structural, electronic, elastic and bonding properties of four transition metal carbides, ScC, YC (group III), VC and NbC (group V), have been investigated systematically using the first principles density functional theory (DFT). The full potential linearized augmented plane wave (FP-LAPW) method with the generalized gradient approximation (GGA) for the exchange correlation has been used for the calculation of the total energy. The ground state properties, such as equilibrium lattice constant, bulk modulus, are computed and compared with theoretical and experimental data. The electronic and bonding patterns of the two groups of compounds have been analyzed quantitatively and compared with the available data. It is clear from band structures that all the four transition metal monocarbides are metallic in nature. Analysis of elastic constants reveals that the carbides of group III are ductile in nature while those of group V are brittle.  相似文献   

8.
Ab initio study of oriented carbon films consisting of bent carbon chains closely packed into a hexagonal cell has been reported. A new structural model of films has been presented. It has been shown that hydrogen impurity is necessary for the stabilization of their structure. Interatomic distances in the film both between chains and along them, as well as the bending angle of carbon chains, have been determined. It has been shown that carbon atoms in the chains have a polyene bond. The distances between chains (5.0 Å) theoretically determined in this work are in excellent agreement with the previously reported experimental data. The analysis of the electronic density of states shows that these films have the dielectric properties with a band gap of about 0.43 eV. The distribution of the charge density along the chains in the film has been studied, which makes it possible to propose a model of the structural instability of such films.  相似文献   

9.
The interaction of 3d- and 4d-metals with a WC(0001) surface has been studied theoretically by density-functional theory methods depending on surface termination and adsorbate position. The most stable sites of metal adsorption on the surface have been determined. The binding energy of d-metals with the surface is shown to be higher in the case of carbon terminated surface. This is explained by the predominant ionic-covalent contribution to the chemical bond at the interface, with the bond ionicity being determined by charge transfer from the metals to the electronegative carbon. Analysis of the electronic and structural characteristics has revealed the factors affecting the bonding energetics at the metal-carbide interface depending on the metal d-shell filling with electrons.  相似文献   

10.
A series of experimental studies has been made on the relationship between optical and structural properties of hydrogenated amorphous silicon (a-Si:H) prepared under various conditions. It has been clarified by analysing the results that the shape of the energy spectrum near the band edge and the distribution of the valence-band tail states depend primarily on the structural disorder of the Si network in a-Si:H. On the other hand, the total content and the bonding mode of bonded hydrogen have little effects on these electronic properties of a-Si:H. It has also been found that the distribution of the valenceband tail states might be related to other unidentified factor(s) besides the structural disorder. The present results have been compared with those of the previous experimental and theoretical studies.  相似文献   

11.
Amorphous CoMoN/CN compound soft-X-ray multilayers were fabricated by dual-facing-target sputtering. Their structural thermal stability has been investigated by monitoring the structural evolutions of CN and CoMoN sublayers at annealing temperatures up to 800 °C using complementary measurement techniques, and measuring the coefficient of interfacial diffusion at annealing temperatures below 300 °C. The period expansion at annealing temperatures below 600 °C, which is usually observed in annealed metal/carbon soft-X-ray multilayers, is only 5%. The enhanced sp2 to sp3 bond ratio caused by the incorporation annealing effect of nitrogen [1] is thought to be responsible for the improved thermal stability of CN sublayers. Mo addition greatly suppresses the structural thermal evolution of CoMoN sublayers. XPS and TEM analyses indicate that the strong chemical bonding between N and Co atoms and Mo nitride aggregation in the grain boundary of cobalt are the main mechanisms for the high thermal stability of CoMoN sublayers. The layered structure of the CoMoN/CN multilayers still exists at the annealing temperature of 800 °C, while Co/C and CoN/CN multilayers have already been destroyed at this temperature. Compared with Co/C and CoN/CN multilayers, the smaller negative interdiffusivity measured by X-ray diffraction reveals the stable interfaces of CoMoN/CN multilayers. These results illustrate that refractory metal incorporation and strong chemical bond establishment are quite effective in obtaining thermally highly stable compound soft-X-ray optical multilayers . PACS 68.65+g; 68.55.Ln; 68.35.Fx; 68.60.Dv  相似文献   

12.
Two-dimensional allotropes of group-IV substrates including silicene, germanene and stanene have recently attracted considerable attention in nanodevice fabrication industry. These materials involving the buckled structure have been experimentally fabricated lately. In this study, first-principles density functional theory calculations were utilized to investigate the mechanical properties of single-layer and free-standing silicene, germanene and stanene. Uniaxial tensile and compressive simulations were carried out to probe and compare stress-strain properties; such as the Young’s modulus, Poisson’s ratio and ultimate strength. We evaluated the chirality effect on the mechanical response and bond structure of the 2D substrates. Our first-principles simulations suggest that in all studied samples application of uniaxial loading can alter the electronic nature of the buckled structures into the metallic character. Our investigation provides a general but also useful viewpoint with respect to the mechanical properties of silicene, germanene and stanene.  相似文献   

13.
The field-emission mechanism of open-ended single-walled carbon nanotubes (SWNTs) is studied. Owing to electronic effects that directly alter the bonding mode and remarkably influence the work function, an open-ended SWNT has much better field-emission properties than a closed SWNT; owing to geometrical effects that slightly influence the work function and the amplification factor, an open-ended SWNT with relaxation has higher threshold voltage and higher current density compared to one without relaxation. It is suggested that adjusting the localized electronic states of the emitting regions, by electronic and geometrical means, could improve the field-emission properties of carbon nanotubes.  相似文献   

14.
The structural, electronic, and optical properties of 4 ? single-walled carbon nanotubes (SWNTs) contained inside the zeolite channels have been studied based upon the density-functional theory in the local-density approximation (LDA). Our calculated results indicate that the relaxed geometrical structures for the smallest SWNTs in the zeolite channels are much different from those of the ideal isolated SWNTs, producing a great effect on their physical properties. It is found that all three kinds of 4 ? SWNTs can possibly exist inside the Zeolite channels. Especially, as an example, we have also studied the coupling effect between the ALPO4-5 zeolite and the tube (5,0) inside it, and found that the zeolite has real effects on the electronic structure and optical properties of the inside (5,0) tube. Received 26 January 2003 Published online 11 April 2003 RID="a" ID="a"e-mail: yxptl@hotmail.com  相似文献   

15.
李军  姚道新 《中国物理 B》2022,31(1):17403-017403
This article reviews the basic theoretical aspects of octagraphene, an one-atom-thick allotrope of carbon, with unusual two-dimensional(2 D) Fermi nesting, hoping to contribute to the new family of quantum materials. Octagraphene has an almost strongest sp2hybrid bond similar to graphene, and has the similar electronic band structure as iron-based superconductors, which makes it possible to realize high-temperature superconductivity. We have compared various possible mechanisms of superconductivity, including the unconventional s;superconductivity driven by spin fluctuation and conventional superconductivity based on electron–phonon coupling. Theoretical studies have shown that octagraphene has relatively high structural stability. Although many 2 D carbon materials with C;carbon ring and C;carbon ring structures have been reported, it is still challenging to realize the octagraphene with pure square-octagon structure experimentally.This material holds hope to realize new 2 D high-temperature superconductivity.  相似文献   

16.
First-principles calculations show that monatomic strings of carbon have high cohesive energy and axial strength, and exhibit stability even at high temperatures. Because of their flexibility and reactivity, carbon chains are suitable for structural and chemical functionalizations; they also form stable ring, helix, grid, and network structures. Analysis of electronic conductance of various infinite, finite, and doped string structures reveal fundamental and technologically interesting features. Changes in doping and geometry give rise to dramatic variations in conductance. In even-numbered linear chains, strain induces a substantial decrease of conductance. The double covalent bonding of carbon atoms underlies their unusual chemical, mechanical, and transport properties.  相似文献   

17.
We have implemented first-principles relativistic pseudopotential calculations within general gradient approximation to investigate the structural and electronic properties of quaternary InAs/GaSb superlattices with an InSb or GaAs type of interface. Because of the complexity and low symmetry of the quaternary interfaces, the interface energy and strain in the InAs/GaSb superlattice system have been calculated to determine the equilibrium interface structural parameters. The band structures of InAs/GaSb superlattices with InSb and GaAs interfaces have been calculated with respect to the lattice constant and atomic position relaxations of the superlattice interfaces. The calculation of the relativistic Hartree–Fock pseudopotential in local density approximation has also been performed to verify the calculated band structure results that have been predicted in other empirical theories. The calculated band structures of InAs/GaSb superlattices with different types of interface (InSb or GaAs) have been systematically compared. We find that the virtual–crystal approximation fails to properly describe the quaternary InAs/GaSb superlattice system, and the chemical bonding and ionicity of anion atoms are essential in determining the interface and electronic structures of InAs/GaSb superlattice system.  相似文献   

18.
The physical properties of most 2D materials are highly dependent on the nature of their interlayer interaction. In-depth studies of the interlayer interaction are beneficial to the understanding of the physical properties of 2D materials and permit the development of related devices. Layered magnetic NiPS_3 has unique magnetic and electronic properties. The electronic band structure and corresponding magnetic state of NiPS_3 are expected to be sensitive to the interlayer interaction, which can be tuned by external pressure. Here, we report an insulator-metal transition accompanied by the collapse of magnetic order during the 2D-3D structural crossover induced by hydrostatic pressure. A two-stage phase transition from a monoclinic(C2/m) to a trigonal(P31m)lattice is identified via ab initio simulations and confirmed via high-pressure X-ray diffraction and Raman scattering; this transition corresponds to a layer-by-layer slip mechanism along the a-axis. Temperature-dependent resistance measurements and room temperature infrared spectroscopy under different pressures demonstrate that the insulator-metal transition and the collapse of the magnetic order occur at ~20 GPa, which is confirmed by low-temperature Raman scattering measurements and theoretical calculations. These results establish a strong correlation between the structural change, electric transport, and magnetic phase transition and expand our understanding of layered magnetic materials. Moreover, the structural transition caused by the interlayer displacement has significance for designing similar devices at ambient pressure.  相似文献   

19.
The magnetic and electronic properties of strontium titanate with different carbon dopant configurations are explored using first-principles calculations with a generalized gradient approximation (GGA) and the GGA+U approach. Our results show that the structural stability, electronic properties and magnetic properties of C-doped SrTiO3 strongly depend on the distance between carbon dopants. In both GGA and GGA+U calculations, the doping structure is mostly stable with a nonmagnetic feature when the carbon dopants are nearest neighbors, which can be ascribed to the formation of a C–C dimer pair accompanied by stronger C–C and weaker C–Ti hybridizations as the C–C distance becomes smaller. As the C–C distance increases, C-doped SrTiO3 changes from an n-type nonmagnetic metal to ferromagnetic/antiferromagnetic half-metal and to an antiferromagnetic/ferromagnetic semiconductor in GGA calculations, while it changes from a nonmagnetic semiconductor to ferromagnetic half-metal and to an antiferromagnetic semiconductor using the GGA+U method. Our work demonstrates the possibility of tailoring the magnetic and electronic properties of C-doped SrTiO3, which might provide some guidance to extend the applications of strontium titanate as a magnetic or optoelectronic material.  相似文献   

20.
A brief review of structural, electrotransport, optical, elastic, and mechanical properties of carbon phases synthesized under pressure by heating fullerite C60 and carbynoid materials is given. A large variety of carbon modifications with a variable bonding type, a variable mean coordination number, a variable molecular or atomic structural type, a variable characteristic dimensionality (from zero-to three-dimensional structures), a variable degree of covalence, etc., were prepared. Emphasis in the review is given to the elucidation of the interplay between the structural and topological characteristics of carbon phases and their key electronic and mechanical properties. A version of the kinetic phase diagram of fullerite C60 transformations on heating under pressure is also suggested. This version is modified with respect to the interpretations known in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号