首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ultrasonics sonochemistry》2014,21(5):1675-1681
An attempt has been made to render the visible light driven photocatalytic activity to the TiO2 nanocatalysts by loading 1 wt% of rare earth (RE) nanoclusters (Gd3+, Nd3+ and Y3+) using a low frequency (42 kHz) producing commercial sonicator. The STEM-HAADF analysis confirms that the RE nanoclusters were residing at the surface of the TiO2. Transmission electron microscopic (TEM) and X-ray diffraction (XRD) analyses confirm that the loading of RE nanoclusters cannot make any significant changes in the crystal structure of TiO2. However, the optical properties of the resulted nanocatalysts were significantly modified and the nanocatalysts were employed to study the sonocatalytic, photocatalytic and sonophotocatalytic decolorization as well as mineralization of Acid Blue 113 (AB113). Among the experimented nanocatalysts maximum degradation of AB113 was achieved in the presence Y3+-TiO2 nanocatalysts. The decolorization of AB113 in the presence and absence of Y3+ loaded TiO2 ensues the following order sonolysis < photocatalysis < sonocatalysis < sonophotocatalysis. The sonophotocatalytic decolorization of AB113 shows 1.4-fold (synergy index) enhanced rate when compared with the two corresponding individual advanced oxidation processes. The sonophotocatalytic mineralization shows that 65% of total organic carbon (TOC) can be removed from AB113 after the 5 h of continuous irradiation however the mineralization cannot be able to show the synergetic effect.  相似文献   

2.
In this work, the influence of CCl4 on the sonochemical decolorization of anthraquinonic dye Acid Blue 25 (AB25) in aqueous medium was investigated using high frequency ultrasound (1700 kHz). This frequency, reputed ineffective, was tested in order to introduce the ultrasound waves with high frequency in the field of degradation or removal of dyes from wastewater, due to its limited use in this field, and to increase the application of high frequency ultrasound wave in the field of environmental protection. The effects of various parameters such as the concentration of CCl4, frequency (22.5 and 1700 kHz), solution pH, temperature and tert-butyl alcohol adding on the decolorization rate of AB25 was studied. The obtained results clearly demonstrated the significant intensification of AB25 decolorization in the presence of CCl4. The enhancement effect of CCl4 increased by decreasing temperature and by increasing the CCl4 concentration. The pH has a significant influence on the bleaching of dye both in the absence and presence of CCl4. The three investigated dosimeter methods (KI oxidation, Fricke reaction and H2O2 production) well corroborate the improvement of the sonochemical effects in the presence of CCl4. The best sonochemical decolorization rate of AB25 in aqueous solution both in the absence and presence of CCl4 is observed to occur at 1700 kHz compared to 22.5 kHz. The sonochemical oxidation of CCl4 generates oxidizing species in the liquid phase that are highly beneficial for oxidation of hydrophilic and non-volatile pollutant, such as dyes, because they are less susceptible to free radical attack due to lower stability of the generated free radicals.  相似文献   

3.
This paper presents a comprehensive experimental and numerical investigation of the effects of liquid temperature on the sonochemical degradation of three organic dyes, Rhodamine B (RhB), Acid orange 7 (AO7) and Malachite green (MG), largely used in the textile industry. The experiments have been carried out for an ultrasonic frequency of 300 kHz. The obtained experimental results were discussed using a new approach combining the results of single-bubble event and the number of active bubbles. The single-bubble event was predicted using a model that combines the bubble dynamics with chemical kinetics occurring inside a bubble during the strong collapse. The number of active bubbles was predicted using a method developed in our previous work. The experiments showed that the degradation rate of the three dyes increased significantly with increasing liquid temperature in the range 25–55 °C. It was predicted that the main pathway of pollutants degradation is the attack by OH radicals. The simulations showed that there exists an optimum liquid temperature of about 35 °C for the production of OH inside a bubble whereas the number of active bubbles increased sharply with the rise of the liquid temperature. It was predicted that the overall production rate of OH increased with increasing liquid temperature in the range 25–55 °C. Finally, it was concluded that the effect of liquid temperature on the sonochemical degradation of the three dyes in aqueous phase was controlled by the number of active bubbles in the range 35–55 °C and by both the number of bubbles and the single bubble yield in the range 25–35 °C.  相似文献   

4.
《Ultrasonics sonochemistry》2014,21(3):1026-1029
Sonoluminescence spectra collected from 0.1 to 3.0 M aqueous solutions of formic acid sparged with argon show the OH(A2Σ+−X2Πi) and C2(d3Πg  a3Πu) emission bands and a broad continuum typical for multibubble sonoluminescence. The overall intensity of sonoluminescence and the sonochemical yield of HCOOH degradation vary in opposite directions: the sonoluminescence is quenched while the sonochemical yield increases with HCOOH concentration. By contrast, the concentration of formic acid has a relatively small effect on the intensity of C2 Swan band. It is concluded that C2 emission originates from CO produced by HCOOH degradation rather than from direct sonochemical degradation of HCOOH. The intensity of C2 band is much stronger at high ultrasonic frequency compared to 20 kHz ultrasound which is in line with higher yields of CO at high frequency. Another product of HCOOH sonolysis, carbon dioxide, strongly quenches sonoluminescence, most probably via collisional non-radiative mechanism.  相似文献   

5.
《Ultrasonics sonochemistry》2014,21(3):1206-1212
The decoloration of reactive dye C.I. Reactive Blue 19 (RB 19) using combined ultrasound with the Fenton process has been investigated. The effect of varying the concentrations of hydrogen peroxide and iron sulfate, initial pH, ultrasonic power, initial dye concentration and dissolved gas on the decoloration and degradation efficiencies was measured. Calibration of the ultrasound systems was performed using calorimetric measurements and oxidative species monitoring using the Fricke dosimeter and degradations were carried out with a 20 kHz probe type transducer at 2, 4, 6 and 8 W cm−2 of acoustic intensity at 15, 25, 50 and 75 mg L−1 initial dye concentrations. First order rate kinetics was observed. It was found that while the degradation rate due to ultrasound alone was slow, sonication significantly accelerated the Fenton reaction. While the results were similar to those reported for other dyes, the effects occurred at lower concentrations. The rate and extent of decoloration of RB 19 increased with rising hydrogen peroxide concentration, ultrasonic powers and iron sulfate concentration but decreased with increasing dye concentration. An optimum pH value of pH = 3.5 was found. The rate of decoloration was higher when dissolved oxygen was present as compared with nitrogen and argon confirming the solution phase mechanism of the degradation.  相似文献   

6.
The effects of ultraviolet radiation-B (UVBR) in apical segments of the red macroalgae Gracilaria domingensis (Kützing) Sonder ex Dickie were examined in vitro. Over a period of 21 days, the segments were cultivated and exposed to photosynthetically active radiation (PAR) at 80 μmol photons m?2 s?1 and PAR + UVBR at 1.6 W m?2 for 3 h per day. The samples were processed for electron microscopy, as well as histochemical analysis, and growth rate, photosynthetic pigment contents and photosynthetic performance were measured. Toluidine Blue reaction showed metachromatic granulations in vacuole and lenticular thickness, while Coomassie Brilliant Blue showed a higher concentration of cytoplasmic organelles, and Periodic Acid Schiff stain showed an increase in the number of floridean starch grains. UVBR also caused changes in the ultrastructure of cortical and subcortical cells, which included an increased number of plastoglobuli, changes in mitochondrial organization, destruction of chloroplast internal organization, and the disappearance of phycobilisomes. The algae cultivated under PAR-only showed growth rates of 6.0% day?1, while algae exposed to PAR + UVBR grew only 2.8% day?1. Compared with algae cultivated with PAR-only, the contents of photosynthetic pigments, including chlorophyll a, phycoerythrin, phycocyanin and allophycocyanin, decreased after exposure to PAR + UVBR, and significant differences were observed. Finally, analysis of these four photosynthetic parameters also showed reduction after exposure to PAR + UVBR: maximum photosynthetic rate, photosynthetic efficiency, photoinhibition and relative electron transport rate. Taken together, these findings strongly suggested that UVBR negatively affects the agarophyte G. domingensis.  相似文献   

7.
《Ultrasonics sonochemistry》2014,21(5):1763-1769
This paper deals about the sonochemical water treatment of acetaminophen (ACP, N-acetyl-p-aminophenol or paracetamol), one of the most popular pharmaceutical compounds found in natural and drinking waters. Effect of ultrasonic power (20–60 W), initial ACP concentration (33–1323 μmol L−1) and pH (3–12) were evaluated. High ultrasonic powers and, low and natural acidic pH values favored the efficiency of the treatment. Effect of initial substrate concentration showed that the Langmuir-type kinetic model fit well the ACP sonochemical degradation. The influence of organic compounds in the water matrix, at concentrations 10-fold higher than ACP, was also evaluated. The results indicated that only organic compounds having a higher value of the Henry’s law constant than the substrate decrease the efficiency of the treatment. On the other hand, ACP degradation in mineral natural water showed to be strongly dependent of the initial substrate concentration. A positive matrix effect was observed at low ACP concentrations (1.65 μmol L−1), which was attributed to the presence of bicarbonate ion in solution. However, at relative high ACP concentrations a detrimental effect of matrix components was noticed. Finally, the results indicated that ultrasonic action is able to transform ACP in aliphatic organic compounds that could be subsequently eliminated in a biological system.  相似文献   

8.
Sonochemical degradation of 4-chlorophenol, phenol, catechol and resorcinol was studied under Ar at 200 kHz in the absence and presence of Na2SO4 or NaCl. The rates of sonochemical degradation in the absence of salts decreased in the order 4-chlorophenol > phenol > catechol > resorcinol and this order was in good agreement with the order of log P (partition coefficient) value of each phenolic compound. The effects of salts on the rates of sonochemical degradation consisted of no effect or slight negative or positive effects. We discussed these unclear results based on two viewpoints: one was based on the changes in pseudo hydrophobicity and/or diffusion behavior of phenolic compounds and the other was based on the changes in solubility of Ar gas. The measured log P value of each phenolic compound slightly increased with increasing salt concentration. In addition, the dynamic surface tension for 4-chlorophenol aqueous solution in the absence and presence of Na2SO4 or NaCl suggested that phenolic compounds more easily accumulated at the interface region of bubbles at higher salt concentration. These results indicated that the rates of sonochemical degradation should be enhanced by the addition of salts. On the other hand, the calculated Ar gas solubility was confirmed to decrease with increasing salt concentration. The yield of H2O2 formed in the presence of Na2SO4 or NaCl decreased with increasing salt concentration. These results suggested that sonochemical efficiency decreased with decreasing gas amount in aqueous solution: a negative effect of salts was observed. Because negative and positive effects were induced simultaneously, we concluded that the effects of salts on the rates of sonochemical degradation of phenolic compounds became unclear. The products formed from sonochemical degradation of 4-chlorophenol were also characterized by HPLC analysis. The formation of phenol and 4-chloro-1,3-dihydroxy benzene was confirmed and these concentrations were affected by the presence of salts.  相似文献   

9.
The degradation of Acid Blue 92 (AB92) solution was investigated using a sonocatalytic process with pure and neodymium (Nd)-doped ZnO nanoparticles. The nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). The 1% Nd-doped ZnO nanoparticles demonstrated the highest sonocatalytic activity for the treatment of AB92 (10 mg/L) with a degradation efficiency (DE%) of 86.20% compared to pure ZnO (62.92%) and sonication (45.73%) after 150 min. The results reveal that the sonocatalytic degradation followed pseudo-first order kinetics. An empirical kinetic model was developed using nonlinear regression analysis to estimate the pseudo-first-order rate constant (kapp) as a function of the operational parameters, including the initial dye concentration (5–25 mg/L), doped-catalyst dosage (0.25–1 g/L), ultrasonic power (150–400 W), and dopant content (1–6% mol). The results from the kinetic model were consistent with the experimental results (R2 = 0.990). Moreover, DE% increases with addition of potassium periodate, peroxydisulfate, and hydrogen peroxide as radical enhancers by generating more free radicals. However, the addition of chloride, carbonate, sulfate, and t-butanol as radical scavengers declines DE%. Suitable reusability of the doped sonocatalyst was proven for several consecutive runs. Some of the produced intermediates were also detected by GC–MS analysis. The phytotoxicity test using Lemna minor (L. minor) plant confirmed the considerable toxicity removal of the AB92 solution after treatment process.  相似文献   

10.
《Ultrasonics sonochemistry》2014,21(6):2084-2091
Lignocellulosic biomass samples (wheat chaff) were pretreated by ultrasound (US) (40 kHz/0.5 W cm−2/10 min and 400 kHz/0.5 W cm−2/10 min applied sequentially) prior to digestion by enzyme extracts obtained from fermentation of the biomass with white rot fungi (Phanerochaete chrysosporium or Trametes sp.). The accessibility of the cellulosic components in wheat chaff was increased, as demonstrated by the increased concentration of sugars produced by exposure to the ultrasound treatment prior to enzyme addition. Pretreatment with ultrasound increased the concentration of lignin degradation products (guaiacol and syringol) obtained from wheat chaff after enzyme addition. In vitro digestibility of wheat chaff was also enhanced by the ultrasonics pretreatment in combination with treatment with enzyme extracts. Degradation was enhanced with the use of a mixture of the enzyme extracts compared to that for a single enzyme extract.  相似文献   

11.
A simple method for synthesis of gold nanoparticles (AuNPs) using Aspergillum sp. WL-Au was presented in this study. According to UV–vis spectra and transmission electron microscopy images, the shape and size of AuNPs were affected by different parameters, including buffer solution, pH, biomass and HAuCl4 concentrations. Phosphate sodium buffer was more suitable for extracellular synthesis of AuNPs, and the optimal conditions for AuNPs synthesis were pH 7.0, biomass 100 mg/mL and HAuCl4 3 mM, leading to the production of spherical and pseudo-spherical nanoparticles. The biosynthesized AuNPs possessed excellent catalytic activities for the reduction of 2-nitrophenol, 3-nitrophenol, 4-nitrophenol, o-nitroaniline and m-nitroaniline in the presence of NaBH4, and the catalytic rate constants were calculated to be 6.3×10−3 s−1, 5.5×10−3 s−1, 10.6×10−3 s−1, 8.4×10−3 s−1 and 13.8×10−3 s−1, respectively. The AuNPs were also able to catalyze the decolorization of various azo dyes (e.g. Cationic Red X-GRL, Acid Orange II and Acid scarlet GR) using NaBH4 as the reductant, and the decolorization rates reached 91.0–96.4% within 7 min. The present study should provide a potential candidate for green synthesis of AuNPs, which could serve as efficient catalysts for aromatic pollutants degradation.  相似文献   

12.
A novel combination of mechanochemical and sonochemical techniques was developed to produce high-surface-area, bio-based calcium carbonate (CaCO3) nanoparticles from eggshells. Size reduction of eggshell achieved via mechanochemical and followed by sonochemical method. First, eggshells were cleaned and ground, then ball milled in wet condition using polypropylene glycol for ten hours to produce fine particles. The ball milled eggshell particles were then irradiated with a high intensity ultrasonic horn (Ti-horn, 20 kHz, and 100 W/cm2) in the presence of N,N-dimethylformamide (DMF); decahydronaphthalene (Decalin); or tetrahydrofuran (THF). The ultrasonic irradiation times varied from 1 to 5 h. Transmission electron microscopic (TEM) studies showed that the resultant particle shapes and sizes were different from each solvent. The sonochemical effect of DMF is more pronounced and the particles were irregular platelets of ~10 nm. The BET surface area (43.687 m2/g) of these nanoparticles is much higher than that of other nanoparticles derived from eggshells.  相似文献   

13.
《Ultrasonics sonochemistry》2014,21(3):1140-1149
Modified chitosans with 3,4-dihydroxy benzoyl groups (CS-DHBA) and 3,4,5-trihydroxy benzoyl groups (CS-THBA) were synthesized and their chemical structures were determined by Fourier transform infrared (FT-IR) and 1H nuclear magnetic resonance (1H NMR) spectroscopy. Then, ultrasonic degradation of CS, CS-DHBA and CS-THBA in 1% acetic acid solution was investigated. The kinetics studies of degradation were followed by gel permeation chromatography (GPC). The results indicated that the weight-average molecular weight of chitosan decreased obviously after ultrasound treatment, but molecular weights of CS-DHBA and CS-THBA decreased slowly with increasing sonication time. Degradation kinetics model based on 1/Mt−1/M0 = kt was used to estimate the degradation rate constant. It was found that the rates of degradation of CS-DHBA and CS-THBA are lower than CS, and follow the order: CS4 > CS8 > CS12 > CS-THBA4 > CS-THBA8  CS-DHBA4 > CS-THBA12 > CS-DHBA8 > CS-DHBA12. The antioxidant activity of the CS, CS-DHBA and CS-THBA before and after sonication was investigated by the radical scavenging activity method using 1,1-diphenyl-2-picrylhydrazyl (DPPH). The DPPH scavenging free radical capacity of CS-THBA and CS-DHBA increased up to 89% and 74% respectively, when the concentration reached 6 μg/ml. The ultrasonic treatment of CS-DHBA and CS-THBA after 30 min decreased the DPPH free radical scavenging activity but ultrasonic treatment of CS increased the DPPH free radical scavenging activity.  相似文献   

14.
Third order nonlinear refractive index of three anthraquinone dyes, i.e., Solvent Blue 59, Solvent Blue 35 and Solvent Green 3 doped in 1294-1b nematic liquid crystal (NLC) were studied by the single beam Z-scan technique using a continuous-wave He–Ne laser at 632.8 nm. The negative nonlinear refractive index (n2) in the order of 10? 5 cm2/w for all samples was obtained. We believe that, this large nonlinearity is owing to Janossy effect and the difference in the nonlinear refractive index of our dyes can be described by the structures of dyes and the interactions between dyes and 1294-1b molecules. So as to understand the effect of dye structure on nonlinearity enhancement, the dichroic ratio of these dyes in 1294-1b was measured using polarized spectroscopy.  相似文献   

15.
Pure and Sm-doped ZnO nanoparticles were synthesized applying a simple sonochemical method. The nanocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) techniques which confirmed the successful synthesis of the doped sonocatalyst. The sonocatalytic degradation of Acid Blue 92 (AB92), a model azo dye, was more than that with sonolysis alone. The 6% Sm-doped ZnO nanoparticles had a band gap of 2.8 eV and demonstrated the highest activity. The degradation efficiency (DE%) of sonolysis and sonocatalysis with undoped ZnO and 6% Sm-doped ZnO was 45.73%, 63.9%, and 90.10%, after 150 min of treatment, respectively. Sonocatalytic degradation of AB92 is enhanced with increasing the dopant amount and catalyst dosage and with decreasing the initial AB29 concentration. DE% declines with the addition of radical scavengers such as chloride, carbonate, sulfate, and tert-butanol. However, the addition of enhancers including potassium periodates, peroxydisulfate, and hydrogen peroxide improves DE% by producing more free radicals. The results show adequate reusability of the doped sonocatalyst. Degradation intermediates were recognized by gas chromatography–mass spectrometry (GC–MS). Using nonlinear regression analysis, an empirical kinetic model was developed to estimate the pseudo-first-order constants (kapp) as a function of the main operational parameters, including the initial dye concentration, sonocatalyst dosage, and ultrasonic power.  相似文献   

16.
Decolorisation of dye solutions by cobalt activated persulphate and ultrasonication has been investigated. Rhodamine B, Methylene Blue dye (basic dyes) and Acid orange II, Acid scarlet red 3R (acid dyes) were used as model compounds in this study. Immobilized cobalt ions, activated the persulphate to form highly reactive sulphate radicals. The degradation studies were conducted with only persulphate (PS), cobalt activated persulphate (PS + Co), persulphate + ultrasonication (PS + US) and cobalt activated persulphate + ultrasonication (PS + US + Co). The decolorisation efficiency were in the order of PS < PS + Co < PS + US < PS + US + Co for all the four dye solutions. The effect of pH, dosage of persulphate as well as catalyst and contact time was investigated. Under the optimum condition, the decolorisation obeyed first-order kinetics. Nearly 90–97% of decolorisation was achieved with COD and TOC removal of about 65–73% and 53–62%, respectively, were achieved within an hour.  相似文献   

17.
The sonochemical degradation of ethyl paraben (EP), a representative of the parabens family, was investigated. Experiments were conducted at constant ultrasound frequency of 20 kHz and liquid bulk temperature of 30 °C in the following range of experimental conditions: EP concentration 250–1250 μg/L, ultrasound (US) density 20–60 W/L, reaction time up to 120 min, initial pH 3–8 and sodium persulfate 0–100 mg/L, either in ultrapure water or secondary treated wastewater.A factorial design methodology was adopted to elucidate the statistically important effects and their interactions and a full empirical model comprising seventeen terms was originally developed. Omitting several terms of lower significance, a reduced model that can reliably simulate the process was finally proposed; this includes EP concentration, reaction time, power density and initial pH, as well as the interactions (EP concentration) × (US density), (EP concentration) × (pHo) and (EP concentration) × (time).Experiments at an increased EP concentration of 3.5 mg/L were also performed to identify degradation by-products. LC–TOF–MS analysis revealed that EP sonochemical degradation occurs through dealkylation of the ethyl chain to form methyl paraben, while successive hydroxylation of the aromatic ring yields 4-hydroxybenzoic, 2,4-dihydroxybenzoic and 3,4-dihydroxybenzoic acids. By-products are less toxic to bacterium V. fischeri than the parent compound.  相似文献   

18.
Acoustic cavitation energy distributions were investigated for various frequencies such as 35, 72, 110 and 170 kHz in a large-scale sonoreactor. The energy analyses were conducted in three-dimensions and the highest and most stable cavitation energy distribution was obtained not in 35 kHz but in 72 kHz. However, the half-cavitation-energy distance was larger in the case of 35 kHz ultrasound than in the case of 72 kHz, demonstrating that cavitation energy for one cycle was higher for a lower frequency. This discrepancy was due to the large surface area of the cavitation-energy-meter probe. In addition, 110 and 170 kHz ultrasound showed a very low and poor cavitation energy distribution. Therefore larger input power was required to optimize the use of higher frequency ultrasound in the sonoreactor with long-irradiation distance. The relationship between cavitation energy and sonochemical efficiency using potassium iodide (KI) dosimetry was best fitted quadratically. From 7.77 × 10?10 to 4.42 × 10?9 mol/J of sonochemical efficiency was evaluated for the cavitation energy from 31.76 to 103. 67 W. In addition, the cavitation energy attenuation was estimated under the assumption that cavitation energy measured in this study would be equivalent to sound intensity, resulting in 0.10, 0.18 and 2.44 m?1 of the attenuation coefficient (α) for 35, 72 and 110 kHz, respectively. Furthermore, α/(frequency)2 was not constant, as some previous studies have suggested.  相似文献   

19.
The CeO2/TiO2, SnO2/TiO2 and ZrO2/TiO2 composites were prepared by dispersing various nano-sized oxides (CeO2, SnO2, ZrO2 and TiO2) with ultrasound and mixing TiO2 with CeO2, SnO2 and ZrO2, respectively, in boiling water in a molar ratio of 4:1, followed by calcining temperature 500 °C for 60 min. Then a series of sonocatalytic degradation experiments were carried out under ultrasonic irradiation in the presence of CeO2/TiO2, SnO2/TiO2 and ZrO2/TiO2 composites and nano-sized TiO2 powder. Also, the influences of heat-treatment temperature and heat-treatment time on the sonocatalytic activities of CeO2/TiO2, SnO2/TiO2 and ZrO2/TiO2 composites, and of irradiation time and solution acidity on the sonocatalytic degradation of Acid Red B were investigated by UV–vis spectra. It was found that the sonocatalytic degradation of Acid Red B shows significant variation in rate and ratio that decreases in order: CeO2/TiO2 > SnO2/TiO2 > TiO2 > ZrO2/TiO2 > SnO2 > CeO2 > ZrO2, and the corresponding ratios of Acid Red B in aqueous solution are 91.32%, 67.41%, 65.26%, 41.67%, 28.34%, 26.75% and 23.33%, respectively. And that the degradation ratio is only 16.67% under onefold ultrasonic irradiation. Because of the good degradation efficiency, this method may be an advisable choice for the treatment of non- or low-transparent wastewaters in the future.  相似文献   

20.
In this study dependency of simultaneous adsorption of Congo Red (CR), Phloxine B (BP) and Fast green FCF (FG) onto CuS/ZnS nanocomposites loaded on activated carbon (CuS/ZnS-NCs-AC) to pH, adsorbent mass, sonication time and initial dyes concentration were modeled and optimized, while CuS/ZnS-NCs-AC was identified by XRD, FESEM and EDS analysis. CR, PB and FG concentration determination were undertaken by first and second order derivative spectrophotometry in ternary mixture. According to central composite design (CCD) based on desirability function (DF), the best experimental conditions was set as pH 6.0, 0.02 g CuS/ZnS-NCs-AC, 5 min sonication time, 15 mg L−1 for PB and 10 mg L−1 for other dyes. Conduction of experiments to above conditions lead to highest dyes removal efficiency of 99.72, 98.8 and 98.17 for CR, PB and FG, respectively. The adsorption data efficiently fitted by Langmuir isotherm model, while the order of maximum adsorption capacity (Qmax) for PB (128.21 mg g−1) > CR (88.57 mg g−1) > FG (73.40 mg g−1) is related to their different structure and charges. Kinetics of process was efficiently explained according to pseudo-second-order kinetic in cooperation of Weber and Morris based on intraparticle diffusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号